| A. | 0 | B. | 1 | C. | 2 | D. | 无数多个 |
分析 令f(x)=$(\frac{2}{7})^{x}$+$(\frac{3}{7})^{x}$+$(\frac{5}{7})^{x}$-1,则方程2x+3x+5x=7x等价于f(x)=0,根据函数的单调性来判断函数零点个数.
解答 解:令f(x)=$(\frac{2}{7})^{x}$+$(\frac{3}{7})^{x}$+$(\frac{5}{7})^{x}$-1,则方程2x+3x+5x=7x等价于f(x)=0.
又f(0)=2>0,f(2)=-$\frac{11}{49}$<0,可知方程在(0,2)中有一个实根.
因为f(x)在R上单调递减,所以方程f(x)=0只有一个实根.
故选:B
点评 本题主要考查了函数的单调性,方程根个数以及构造函数的应用,属中等题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com