精英家教网 > 高中数学 > 题目详情
8.请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底面圆半径为5m的圆锥,下部是底面圆半径为5m的圆柱,且该仓库的总高度为5m.经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/m2,1百元/m2,设圆锥母线与底面所成角为θ,且θ∈(0,$\frac{π}{4}$),问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.

分析 设该仓库的侧面总造价为y,运用圆柱和圆锥的侧面积公式,结合条件,可得函数解析式,求出导数,极值点也为最值点,即可得到结论.

解答 解:设该仓库的侧面总造价为y,
则$y=[{2π×5×5(1-tanθ)}]×1+[{\frac{1}{2}×2π×5×\frac{5}{cosθ}}]×4$=$50π({1+\frac{2-sinθ}{cosθ}})$,(6分)
由$y'=50π({\frac{2sinθ-1}{{co{s^2}θ}}})=0$,得$sinθ=\frac{1}{2}$,$θ∈({0,\frac{π}{4}})$,
所以$θ=\frac{π}{6}$,(10分)
列表:

θ$({0,\frac{π}{4}})$$\frac{π}{6}$$({\frac{π}{6},\frac{π}{4}})$
y'-0+
y极小值
所以当$θ=\frac{π}{6}$时,侧面总造价y最小,此时圆锥的高度为$\frac{{5\sqrt{3}}}{3}$m.(14分)

点评 本题考查函数模型在实际问题中的应用,考查导数的运用:求单调区间和极值、最值,考查化简整理运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2+a(lnx-x+1)(其中a∈R,且a为常数)
(Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=e2x-a•ex+2x是R上的增函数,则实数a的取值范围是(  )
A.[-4,4]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-∞,4]D.(-∞,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=$\frac{1}{2}$x+1过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点和一个顶点,则椭圆的离心率为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程2(log3x)2+log3x-3=0的解是${3}^{-\frac{3}{2}}$,3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+3|x-a|(a>0).
(1)当a=1时,曲线y=f(x)上P点处的切线与直线x-3y-2=0垂直,求P点的坐标;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+ax(a∈R).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线y=2x平行,求实数a的值及该切线方程;
(Ⅱ)若对任意的x∈(0,+∞),都有f(x)≤1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数y=x3-3bx+1在区间(1,2)内是减函数,b∈R,则(  )
A.b≤4B.b<4C.b≥4D.b>4

查看答案和解析>>

同步练习册答案