精英家教网 > 高中数学 > 题目详情
13.复数z=$\frac{3+i}{1-i}$(其中i为虚数单位)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数的除法的运算法则化简求解即可.

解答 解:复数z=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=$\frac{2+4i}{2}$=1+2i.
复数对应点(1,2)在第一象限.
故选:A.

点评 本题考查复数代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2-2tx+2在[0,1]的最小值为g(t),则g(t)的表达式为g(t)=$\left\{\begin{array}{l}{2,}&{t≤0}\\{-{t}^{2}+2,}&{0<t<1}\\{-2t+3,}&{t≥1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10<0\\ x+y-8≤0\end{array}\right.$,则目标函数z=3x-4y的取值范围是(  )
A.[-11,3)B.[-11,3]C.(-11,3)D.(-11,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.弹簧振子的振动在简谐振动,如表给出的振子在完成一次全振动的过程中的时间t与位移y之间的对应数据,根据这些数据求出这个振子的振动的函数解析式为y=-20cos($\frac{π}{6{t}_{0}}$t).
t0t02t03t04t05t06t07t08t09t010t011t012t0
 y-20.0-17.8-10.1 0.1 10.3 17.1 20.0 17.7 10.3 0.1-10.1-17.8-20.0 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x-\frac{1}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求f(x)在区间$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:四棱锥P-ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.
(1)求证:AM∥平面PBC;
(2)求证:CD⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且a1=1,Sn=Sn-1+an-1+2n-2(n≥2)
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)an+1,记f(n)=b1+b2+…+bn,若 对任意n,(n∈N*),不等式f(n)<λ•an+1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,$\overrightarrow c$=$\overrightarrow a$+2$\overrightarrow b$,$\overrightarrow d$=2$\overrightarrow a$+k$\overrightarrow b$,当实数k取何值时:
(1)$\overrightarrow c⊥\overrightarrow d$.
(2)$\overrightarrow c∥\overrightarrow d$.

查看答案和解析>>

同步练习册答案