精英家教网 > 高中数学 > 题目详情
18.如图:四棱锥P-ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.
(1)求证:AM∥平面PBC;
(2)求证:CD⊥PA.

分析 (1)推导出四边形ABCM是平行四边形,从而AM∥BC,由此能证明AM∥平面PBC.
(2)由PD=PC,点M是CD的中点,得PM⊥CD,由AB⊥BC,AB∥CD,AM∥BC,得CD⊥AM,从而CD⊥平面PAM,由此能证明CD⊥PA.

解答 证明:(1)∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点
∴AB$\underset{∥}{=}$CM,∴四边形ABCM是平行四边形,
∴AM∥BC,
∵AM?平面PBC,BC?平面PBC,
∴AM∥平面PBC.
(2)∵PD=PC,点M是CD的中点,
∴PM⊥CD,
∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,AM∥BC,
∴CD⊥AM,
∵PM∩AM=M,
∴CD⊥平面PAM,
∵PA?平面PAM,
∴CD⊥PA.

点评 本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(3,-1),设x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,则目标函数z=$\overrightarrow{a}$$•\overrightarrow{b}$的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间(0,3]上随机取一个数x,则事件“-1≤x≤$\frac{1}{2}$”发生的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在五面体ABCDEF中,四边形ABCD为菱形,且∠BAD=60°,对角线AC与BD相交于O;OF⊥平面ABCD,BC=CE=DE=2EF=2.
(Ⅰ)求证:EF∥BC;
(Ⅱ)求直线DE与平面BCFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z=$\frac{3+i}{1-i}$(其中i为虚数单位)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设i是虚数单位,复数z满足(z-i)(1+i)2=2i,则z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)=ax2+bx+2是定义在[1+a,1]上的偶函数,则f(x)>0的解集为(  )
A.(-2,2)B.C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若(1+x)+(1+x)2+…+(1+x)5=a0+a1(1-x)+a2•(1-x)2+…+a5(1-x)5,则a1+a2+a3+a4+a5等于(  )
A.5B.62C.-57D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$,则f($\frac{π}{12}$)的值为8.

查看答案和解析>>

同步练习册答案