精英家教网 > 高中数学 > 题目详情
7.若(1+x)+(1+x)2+…+(1+x)5=a0+a1(1-x)+a2•(1-x)2+…+a5(1-x)5,则a1+a2+a3+a4+a5等于(  )
A.5B.62C.-57D.-56

分析 在所给的等式中,分别令x=1,可得a0=62;令x=0,可得a0+a1+a2+a3+a4+a5 =5,从而求得 a1+a2+a3+a4+a5 的值.

解答 解:∵(1+x)+(1+x)2+…+(1+x)5=a0+a1(1-x)+a2•(1-x)2+…+a5(1-x)5
令x=1,可得a0=2+22+23+24+25=62,
再令x=0,可得a0+a1+a2+a3+a4+a5 =5,∴a1+a2+a3+a4+a5 =-57,
故选:C.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{2x}{ln|x|}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:四棱锥P-ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.
(1)求证:AM∥平面PBC;
(2)求证:CD⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知复数z满足(2-3i)z=3+2i(i是虚数单位),则z的模为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CA}$=$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$,求证:△ABC是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y满足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值为m,若正数a,b满足a+b=m,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知tanA=$\frac{cosB-cosC}{sinC-sinB}$,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案