精英家教网 > 高中数学 > 题目详情
如图在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,
(1)求证:BD⊥PC.
(2)若PA=2AB,∠BAD=45°,求PD与平面PAB所成角的正弦值.
考点:直线与平面所成的角,空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明BD⊥平面PAC,利用直线与平面垂直的性质即可证得BD⊥PC;
(2)过D作DE⊥AB,垂足为E,连接PE,则DE⊥平面PAB,∠DPE是PD与平面PAB所成角,即可求解.
解答: (1)证明:∵PA⊥底面ABCD,BD?底面ABCD,
∴PA⊥BD;①
又底面ABCD是菱形,
∴AC⊥BD;②
PA∩AC=A,
∴BD⊥平面PAC,PC?平面PAC,
∴BD⊥PC;
(2)解:过D作DE⊥AB,垂足为E,连接PE,则DE⊥平面PAB,
∴∠DPE是PD与平面PAB所成角,
设DE=1,则AD=
2
,PA=2
2

∴PD=
2+8
=
10

∴sin∠DPE=
DE
PD
=
10
10
点评:本题考查的知识点是直线与平面所成的角,直线与平面垂直的判定与性质,熟练掌握线面垂直与平行的判定定理和性质定理是解题的关键.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审,假设评审结果为“支持”与“不支持”的概率分别为
2
3
1
3
,若某人获得两个“支持”,则给予10万元的创业资助,若只获得一个“支持”,则给予5万元的资助,若未获得“支持”,则不予资助,求:
(1)该公司的资助总额为零的概率
(2)该公司的资助总额超过15万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)定义域为R,取x0∈R并且xn+1=f(xn)(n∈N),则称{xn}是f(x)的迭代数列.已知{an},{bn}均是f(x)=
1
x2+2
的迭代数列,Sn=
n
k=1
ak,Tn=
n
k=1
bk
(Ⅰ)对任意x,y∈R且x≠y,求证:|f(x)-f(y)|<
1
4
|x-y|.
(Ⅱ)求证:|Sn-Tn|<
2
3
(n∈N+).
(Ⅲ)求证:存在唯一实数T满足|Sn-nt|<
2
3
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,E是PC中点,F为线段AC上一点.
(1)求证:BD⊥EF;
(2)若EF∥平面PBD,求
AF
FC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5,6这7个数字中选出4个不同的数字组成四位数.
(1)一共可以组成多少个四位数;
(2)一共可以组成多少个比1300大的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|x2-x-6>0},B={x|0<x+a<4},若A∩B=∅,求实数a的取值范围;
(2)已知f(x)=-3x2+a(7-a)x+b.当不等式f(x)>0的解集为(-1,3)时,求实数a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线向量,已知
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2

(1)若A,B,D三点共线,求实数k的值;
(2)若
e1
e2
为单位向量,
e1
e2
的夹角是
2
3
π,且
AB
CB
,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=6,an+1=
n+2
n
an+(n+1)(n+2).
(1)若dn=
an
n(n+1)
,求数列{dn}的通项公式;
(2)若bn=
an
(n+1)(n+2)
2n+1
,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是△ABC的三条边,a,b,c成等差数列,
a
b
c
也成等差数列,则△ABC的形状是
 

查看答案和解析>>

同步练习册答案