精英家教网 > 高中数学 > 题目详情
某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审,假设评审结果为“支持”与“不支持”的概率分别为
2
3
1
3
,若某人获得两个“支持”,则给予10万元的创业资助,若只获得一个“支持”,则给予5万元的资助,若未获得“支持”,则不予资助,求:
(1)该公司的资助总额为零的概率
(2)该公司的资助总额超过15万元的概率.
考点:相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)独立地对每位大学生的创业方案进行评审,该公司的资助总额为零表示三个大学生都没有获得支持,这三个大学生是否获得支持是相互独立的,根据相互独立事件的概率公式得到结果.
(2)公司的资助总额超过15万元,表示三个大学生得到四个支持,五个支持和六个支持,这三个事件之间是互斥的,根据独立重复试验和互斥事件的概率公式得到结果.
解答: 解:(1)由题意知独立地对每位大学生的创业方案进行评审、
∵评审结果为“支持”与“不支持”的概率分别为
2
3
1
3

该公司的资助总额为零表示三个大学生都没有获得支持,
这三个大学生是否获得支持是相互独立的,
设A表示资助总额为零这个事件,
则P(A)=(
1
3
6=
1
729

(2)公司的资助总额超过15万元,表示三个大学生得到四个支持,
五个支持和六个支持,这三个事件之间是互斥的,
设B表示资助总额超过15万元这个事件,
∴P=
C
4
6
(
2
3
)4(
1
3
)2
+
C
5
6
(
2
3
)
5
(
1
3
)
1
+(
2
3
)
6
=
496
729
点评:本题考查独立重复试验概率公式,考查互斥事件的概率,考查相互独立事件的概率,是一个综合题,解题的关键是读懂题意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且a4a5+a3a6=18,则log3a1+log3a2+…+log3a8=(  )
A、12B、10C、8D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-2x+2=0,x∈C;
(1)解此方程;
(2)若复数ω=3+i,z为上述方程的根,且复数ω、z在复平面内表示的点位于同一象限,计算z4+zω+
ω
z
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,AB=1,AD=2,且∠BAD=60°,以BD为折线,把△ABD折起,使平面ABD⊥平面CBD,连接AC.

(Ⅰ)求证:AB⊥DC;
(Ⅱ)求二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在常数a、b,使等式:12+22+32+…+n2=an(n+b)(2n+1)对一切正整数n成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-x2-lnx,a∈R.
(1)若a=0,求f(x)的单调区间;
(2)若函数f(x)存在极值,且所有极值之和大于5-ln
1
2
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点(1,
3
2
),其离心率e=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过坐标原点O作不与坐标轴重合的直线l交椭圆C于P、Q两点,过P作x轴的垂线,垂足为D,连接QD并延长交椭圆C于点E,试判断随着l的转动,直线PE与l的斜率的乘积是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a=
1
3
,设bn=
1
1+an
+
1
1-an+1
,数列{bn}的前n项和为Tn.求证:Tn>2n-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,
(1)求证:BD⊥PC.
(2)若PA=2AB,∠BAD=45°,求PD与平面PAB所成角的正弦值.

查看答案和解析>>

同步练习册答案