精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a=
1
3
,设bn=
1
1+an
+
1
1-an+1
,数列{bn}的前n项和为Tn.求证:Tn>2n-
1
3
考点:数列的求和,等差数列的通项公式,等比数列的通项公式,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出{an}是首项为a,公比为a的等比数列,由此能求出{an}的通项公式.
(Ⅱ)由a=
1
3
,得an=(
1
3
)n
bn =2-(
1
3n+1
-
1
3n+1-1
)>2-(
1
3n
-
1
3n+1
),由此利用裂项求和法能证明Tn>2n-
1
3
解答: (Ⅰ)解:∵Sn=
a
a-1
(an-1),
∴n=1时,S1=a1=
a
a-1
(a1-1)
,解得a1 =a.…(2分)
当n≥2时,有an=Sn-Sn-1
=
a
a-1
an-
a
a-1
an-1

解得
an
an-1
=a
,…(4分)
∴{an}是首项为a,公比为a的等比数列.…(5分)
an=a•an-1=an.…(6分)
(Ⅱ)证明:∵a=
1
3
,∴an=(
1
3
)n
,…(7分)
bn =
1
1+(
1
3
)n
+
1
1-(
1
3
)n+1

=
3n
3n+1
+
3n+1
3n+1-1

=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1

=1-
1
3n+1
+1+
1
3n+1-1

=2-(
1
3n+1
-
1
3n+1-1
),…(9分)
1
3n+1
1
3n
1
3n+1-1
1
3n+1

1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1
,…(11分)
bn=2-(
1
3n+1
-
3
3n+1-1
)
>2-(
1
3n
-
1
3n+1
),…(12分)
Tn =b1+b2+…+bn
>[2-(
1
3
-
1
32
)]+[2-(
1
32
-
1
33
)]+…+[2-(
1
3n
-
1
3n+1
)]
=2n-[(
1
3
-
1
32
)+(
1
32
-
1
33
)+…+(
1
3n
-
1
3n+1
)]
=2n-(
1
3
-
1
3n+1
)>2n-
1
3

即Tn>2n-
1
3
.…(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为统计某校学生数学学业水平测试成绩,现抽出40名学生成绩,得到样本频率分布直方图,如图所示,规定不低于60分为及格,不低于85分为优秀.

(1)估计总体的及格率;
(2)求样本中优秀人数;
(3)若从样本中优秀的学生里抽出2人,求这两人至少有一人数学成绩不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审,假设评审结果为“支持”与“不支持”的概率分别为
2
3
1
3
,若某人获得两个“支持”,则给予10万元的创业资助,若只获得一个“支持”,则给予5万元的资助,若未获得“支持”,则不予资助,求:
(1)该公司的资助总额为零的概率
(2)该公司的资助总额超过15万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三个人独立地翻译同一份密码,每人译出此密码的概率依次为0.4,0.35,0.3.设随机变量X表示译出此密码的人数.求:
(1)恰好有2个人译出此密码的概率P(X=2);   
(2)此密码被译出的概率P(X≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x2+3x(x≥0)交于点O,A,与直线x=t(0<t<1)与曲线C1,C2交于B,D
(1)写出四边形ABOD的面积S与t的函数关系S=f(t)
(2)讨论f(t)的单调性,并求f(t)的最大值
(3)对任意t∈(0,1),x∈(
π
4
,π],f(t)>cos x+
3
sin x+a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,侧棱DD1⊥底面ABCD,AD⊥DC,AD∥BC,AD=DD1=2,BC=DC=1.点E是侧棱DD1的中点.
(1)证明:B1E⊥AB;
(2)若点F在线段B1E上,且B1F=
1
3
B1E,求直线AF与平面BDD1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)定义域为R,取x0∈R并且xn+1=f(xn)(n∈N),则称{xn}是f(x)的迭代数列.已知{an},{bn}均是f(x)=
1
x2+2
的迭代数列,Sn=
n
k=1
ak,Tn=
n
k=1
bk
(Ⅰ)对任意x,y∈R且x≠y,求证:|f(x)-f(y)|<
1
4
|x-y|.
(Ⅱ)求证:|Sn-Tn|<
2
3
(n∈N+).
(Ⅲ)求证:存在唯一实数T满足|Sn-nt|<
2
3
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,E是PC中点,F为线段AC上一点.
(1)求证:BD⊥EF;
(2)若EF∥平面PBD,求
AF
FC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=6,an+1=
n+2
n
an+(n+1)(n+2).
(1)若dn=
an
n(n+1)
,求数列{dn}的通项公式;
(2)若bn=
an
(n+1)(n+2)
2n+1
,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案