精英家教网 > 高中数学 > 题目详情

已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.

 

(1,0,1)

【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(),即D(1,0,1).

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:填空题

在平面直角坐标系xOy中,设过原点的直线l与圆C:(x-3)2+(y-1)2=4交于M、N两点,若|MN|≥2,则直线l的斜率k的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:填空题

已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,PQ中点为M(x0,y0),且y0>x0+2,则的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:解答题

如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;

(2)求二面角B1-CE-C1的正弦值;

(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题

如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:填空题

已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

已知向量=(2,4,5),=(3,x,y),若,则(  )

A.x=6,y=15 B.x=3,y=

C.x=3,y=15 D.x=6,y=

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

已知α,β是两个不同的平面,给出下列四个条件:

①存在一条直线a,a⊥α,a⊥β;

②存在一个平面γ,γ⊥α,γ⊥β;

③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;

④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.

可以推出α∥β的是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:解答题

若不等式+…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.

 

查看答案和解析>>

同步练习册答案