精英家教网 > 高中数学 > 题目详情
设{an}为等比数列,Sn为数列{an}的前n项和,a3=4,a6=32
(1)求数列{an}的通项公式an 及前n项和Sn
(2)设T=Sn+
64
Sn+1
,求T的最小值及此时n的值.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件,利用等比数列的通项公式列出方程组,求出公比和首项,由此能求出数列{an}的通项公式an和前n项和Sn
(2)由(1)得到T=2n-1+
64
2n
,由此利用均值不等式能求出T的最小值及此时n的值.
解答: 解:(1)∵{an}为等比数列,a3=4,a6=32,设公比为q,
a1q2=4
a1q5=32
,解得a1=1,q=2,
an=2n-1Sn=
1-2n
1-2
=2n-1.
(2)∵Sn=2n-1
∴T=Sn+
64
Sn+1
=2n-1+
64
2n
≥2
2n
64
2n
-1=15.
当且仅当2n=
64
2n
,即n=3时,T取最小值15.
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意均值定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

实数x,y满足
x≥2
x-2y+4≥0
2x-y-4≤0
,若z=kx+y的最大值为13,则实数k=(  )
A、2
B、
13
2
C、
9
4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y-1=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的顶点和焦点F.
(Ⅰ)求此椭圆的标准方程;
(Ⅱ)斜率为k,且过点F的动直线l与椭圆C交于A,B两点,点A关于x轴的对称点为D,求证直线BD过顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

公差不为零的等差数列{an}中,a4=7,且a2、a5、a14成等比数列.
(1)求数列{an}的通项公式.
(2)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点F2到直线l1:3x+4y=0的距离为
3
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)
均在函数y=
1
2
x+
1
2
的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,且x≠1,数列{an}的前n项和为Sn,它满足条件
xn-1
Sn
=1-
1
x
,数列{bn}中,bn=an•lgan
(1)求数列{bn}的前n项和Tn
(2)若对一切n∈N*都有bn<bn+1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+2y≥2
ex-y≥0
0≤x≤2
,则M(x,y)所在平面区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x-
2
x
8的展开式中,则常数项是
 
(用数字作答)

查看答案和解析>>

同步练习册答案