精英家教网 > 高中数学 > 题目详情
实数x,y满足
x≥2
x-2y+4≥0
2x-y-4≤0
,若z=kx+y的最大值为13,则实数k=(  )
A、2
B、
13
2
C、
9
4
D、5
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=kx+y得y=-kx+z,∴直线的截距最大,对应的z也取得最大值,
即平面区域在直线y=-kx+z的下方,且-k<0
平移直线y=-kx+z,由图象可知当直线y=-kx+z经过点A时,直线y=-kx+z的截距最大,此时z最大为13,
即kx+y=13
x-2y+4=0
2x-y-4=0
,解得
x=4
y=4

即A(4,4),
此时4k+4=13,解得k=
9
4

故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义,结合数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为
x=1+tcosα
y=tsinα
 (t为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2
0
(x+
4-x2
)dx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-2x)5的展开式中x2的系数是(  )
A、10B、-10
C、40D、-40

查看答案和解析>>

科目:高中数学 来源: 题型:

从2、3、5、7这四个质数中任取两个相乘,可以得到不相等的积的个数是(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司为激励广大员工的积极性,规定:若推销产品价值在10000元之内的年终提成5%;若推销产品价值在10000元以上(包括10000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
6
)+2sin2
ω
2
x(ω>0),已知函数f(x)的图象的相邻对称轴的距离为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若△ABC的内角为A,B,C所对的边分别为a,b,c(其中b<c),且f(A)=
3
2
,△ABC面积为S=6
3
,a=2
7
,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x2
4
+
y2
=1和曲线C2
x2
+
y2
4λ2
=1(0<λ<1).曲线C2的左顶点恰为曲线C1的左焦点.
(1)求λ的值;
(2)设P(x0,y0)为曲线C2上一点,过点P作直线交曲线C1于A,C两点,直线OP交曲线C1于B,D两点,若P为AC中点.
①求证:直线AC的方程为x0x+2y0y=2;
②四边形ABCD的面积是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等比数列,Sn为数列{an}的前n项和,a3=4,a6=32
(1)求数列{an}的通项公式an 及前n项和Sn
(2)设T=Sn+
64
Sn+1
,求T的最小值及此时n的值.

查看答案和解析>>

同步练习册答案