精英家教网 > 高中数学 > 题目详情
某公司为激励广大员工的积极性,规定:若推销产品价值在10000元之内的年终提成5%;若推销产品价值在10000元以上(包括10000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的程序框图.
考点:设计程序框图解决实际问题
专题:算法和程序框图
分析:由已知可得,本算法的功能是计算分段函数y=
0.05x,x<10000
0.1x,x≥10000
的值,可知本算法是一个条件结构,由分段函数解析式,写出分段标准(条件)及各段上函数的解析式,可得程序语句及流程图.
解答: 解:由已知可得,本算法的功能是计算分段函数y=
0.05x,x<10000
0.1x,x≥10000
的值,
本题算法的程序框图如下:
点评:本题考查的知识点是设计算法解析实际问题,其中熟练掌握条件结构的格式和功能是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.
(Ⅰ)求an与Sn
(Ⅱ)令bn=
2n-1+1
(3n-2)an
,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
9
=1
(a>0)与双曲线
x2
4
-
y2
3
=1
有相同的焦点,则椭圆的离心率为(  )
A、
2
2
B、
7
2
C、
7
4
D、
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

条件p:x≥0,条件q:x2≤x,则p是q的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足
x≥2
x-2y+4≥0
2x-y-4≤0
,若z=kx+y的最大值为13,则实数k=(  )
A、2
B、
13
2
C、
9
4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知动圆M过定点F(0,1)且与x轴相切,点F关于圆心M的对称点为F′,动点F′的轨迹为C.
(1)求曲线C的方程;
(2)设A(x0,y0)是曲线C上的一个定点,过点A任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点P、Q,证明:直线PQ的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M、N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
TM
TN
的最小值,并求此时圆T的方程;
(Ⅲ)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点.试问;是否存在使S△POS•S△POR最大的点P,若存在求出P点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示. 
每扇门对应的梦想基金:(单位:元)
第一扇门 第二扇门 第三扇门 第四扇门
1000 2000 3000 5000
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)若某选手能正确回答第一、二、三、四扇门的概率分别为
4
5
3
4
2
3
1
3
,正确回答一个问题后,选择继续回答下一个问题的概率是
1
2
,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.(参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)
均在函数y=
1
2
x+
1
2
的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案