精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知圆的参数方程为为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.

(1)若直线与圆有公共点,试求实数的取值范围;

(2)当时,过点且与直线平行的直线交圆两点,求的值.

【答案】(1) (2)

【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.

试题解析:

(1)由

故直线的直角坐标方程为.

所以圆的普通方程为.

若直线与圆有公共点,则圆心到直线的距离,即

故实数的取值范围为.

(2)因为直线的倾斜角为,且过点

所以直线的参数方程为为参数),①

的方程为,②

联立①②,得

两点对应的参数分别为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)若曲线在点处的切线与直线垂直,求单调递减区间和极值(其中为自然对数的底数);

(Ⅱ)若对任意恒成立.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求函数处的切线方程;

(2)记函数的导函数是,若不等式对任意的实数恒成立,求实数a的取值范围;

(3)设函数是函数的导函数,若函数存在两个极值点,且,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019426日,铁人中学举行了盛大的成人礼.仪式在《相信我们会创造奇迹》的歌声中拉开序幕,庄严而神圣的仪式感动了无数家长,4月27日,铁人中学官方微信发布了整个仪式精彩过程,几十年众志成城,数十载砥砺奋进,铁人中学正在创造着一个又一个奇迹.官方微信发布后,短短几个小时点击量就突破了万人,收到了非常多的精彩留言.学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

(Ⅰ)求这100位留言者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,留言者年龄服从正态分布,其中近似为样本均数近似为样本方差

(ⅰ)利用该正态分布,求

(ii)学校从年龄在的留言者中,按照分层抽样的方法,抽出了7人参加“精彩留言”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是,求变量的分布列和数学期望.附:,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮最高点距离地面高度为120m,转盘直径为110m,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min.

1)游客甲坐上摩天轮的座舱,开始转动tmin后距离地面的高度为Hm,求在转动一周的过程中,H关于t的函数解析式;

2)求游客甲在开始转动5min后距离地面的高度;

3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求高度差的最大值(精确到0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个结论:

①函数与函数的定义域相同,②函数为常数)图像可由的图像平移得到,③函数是奇函数且是偶函数,④若幂函数是奇函数,则是定义域上的增函数,其中正确的结论的序号是_________(将所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)在已分组的若干数据中,每组的频数是指___________,每组的频率是指____________.

2)一个公司共有N名员工,下设一些部门,要采用等比例外层随机抽样的方法从全体员工中抽取样本量为n的样本,如果某部门有m名员工,那么从该部门抽取的员工人数是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数在区间上是单调递增函数,求实数的取值范围;

(II)若函数有两个极值点,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,已知成绩在130~140分数段的人数为2.

(1)求这组数据的平均数M.

(2)现根据初赛成绩从第一组和第五组(从低分段至高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组.若选出的两人的成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.

查看答案和解析>>

同步练习册答案