精英家教网 > 高中数学 > 题目详情
15.在△ABC中,已知A=120°,b=3,c=5,则sinB+sinC=$\frac{4\sqrt{3}}{7}$.

分析 由题意和余弦定理可求a的值,进而利用正弦定理可得sinB,sinC的值,即可得解.

解答 解:∵在△ABC中,A=120°,b=3,c=5,
∴由余弦定理可得a2=b2+c2-2bccos120°,
代入数据可得a2=9+25+15=49,解得a=7,
∴由正弦定理可得$\frac{7}{\frac{\sqrt{3}}{2}}$=$\frac{3}{sinB}$=$\frac{5}{sinC}$=$\frac{14\sqrt{3}}{3}$,
∴sinB+sinC=$\frac{3}{\frac{14\sqrt{3}}{3}}$+$\frac{5}{\frac{14\sqrt{3}}{3}}$=$\frac{4\sqrt{3}}{7}$.
故答案为:$\frac{4\sqrt{3}}{7}$.

点评 本题主要考查了正、余弦定理在解三角形中的应用,求出边a是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在一个边长为5cm的正方形内部画一个边长为2cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简:sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$cos2α•cos2β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.学了异面直线的概念和作法后,老师出了下面一道题:“已知平面α,β,直线a,b为异面直线,a?α,b?β,α∩β=c,请问:直线c与直线a,b有怎样的位置关系?”甲、乙、丙、丁四位同学给出了四种不同的答案,甲:c与a,b都不相交;乙:c与a,b都相交;丙:c至少与a,b中的一条相交;丁:c至多与a,b中的一条相交.问:他们的答案中哪些是正确的?哪些是错误的?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.平行四边形ABCD,证明:|$\overrightarrow{AB}$|2+|$\overrightarrow{BC}$|2+|$\overrightarrow{CD}$|2+|$\overrightarrow{DA}$|2=|$\overrightarrow{AC}$|2+|$\overrightarrow{BD}$|2(提示:θ+φ=π,利用余弦定理)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在三棱锥V-ABC中,D、E、F分别是VA、VB、VC上的点并且$\frac{AD}{AV}$=$\frac{AE}{AC}$=$\frac{VF}{VB}$=$\frac{CG}{CB}$=$\frac{1}{3}$.求证:直线DF、EG、AB共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.比较a2+b2+12与6a-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=1-2x2,g(x)=x2-2x,若F(x)=$\left\{\begin{array}{l}{g(x),f(x)≥g(x)}\\{f(x),f(x)<g(x)}\end{array}\right.$ 求函数F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x不等式2x2+bx-c>0的解集为{x|x<-1或x>3},则关于x的不等式bx2+cx+4≥0的解集为(  )
A.{x|x≤-2或x≥$\frac{1}{2}$}B.{x|x≤-$\frac{1}{2}$或x≥2}C.{x|-$\frac{1}{2}$≤x≤2}D.{x|-2≤x≤$\frac{1}{2}$}

查看答案和解析>>

同步练习册答案