精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是菱形, 平面 ,点的中点.

)求证: 平面

)求证:平面平面

)求三棱锥的体积.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:()要证线面平行,就要证线线平行,由线面平行的性质定理知平行线是过的平面与平面的交线,由已知取的中点,可证平行且相等,从而有;()要证面面垂直,一般先证线面垂直,由()的证明过程及已知的垂直可知应证平面,而且易证(证平面);()由()知

试题解析:

)取中点,连接

因为点的中点,

所以

,且

所以

所以四边形为平行四边形.

所以

平面平面

所以平面

)连接

因为四边形为菱形, ,所以为等边三角形.

因为中点,所以

又因为平面平面,所以

平面

所以平面

所以平面

平面,所以平面平面

法二:因为四边形为菱形, ,所以为等边三角形.

因为中点,所以

又因为平面平面

所以平面平面

又平面平面

所以平面

所以平面

平面,所以平面平面

)因为

, 所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出所有满足的值;若不是,请说明事由.

2)若是定义在区间上的“局部奇函数”,求实数的取值范围.

3)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.

(1)求证:O、B、D、E四点共圆;
(2)求证:2DE2=DMAC+DMAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线过焦点交抛物线于两点, ,点的纵坐标为.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点是抛物线位于曲线 (为坐标原点)上一点,求的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足f(2+x)=f(2﹣x),其图象开口向上,顶点为A,与x轴交于点B(﹣1,0)和C点,且△ABC的面积为18.

(1)求此二次函数的解析式;

(2)若方程f(x)=m(x﹣1)在区间[0,1]有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点在圆上运动.

)如果是等腰三角形,求点的坐标

)如果直线与圆的另一个交点为,且,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学成绩

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成绩

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的数学成绩与物理成绩之间有关系(
A.99.5%
B.99.9%
C.97.5%
D.95%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图2.

(1)当AG+GC最小时,求证:BD⊥CG;
(2)当2VBADGE=VDGBCF时,求二面角D﹣BG﹣C平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,f (x)=sin(2x﹣A) (x∈R),函数f(x)的图象关于点( ,0)对称.
(1)当x∈(0, )时,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.

查看答案和解析>>

同步练习册答案