【题目】已知点
,圆
,点
在圆
上运动.
(
)如果
是等腰三角形,求点
的坐标.
(
)如果直线
与圆
的另一个交点为
,且
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下判断正确的是( )
A.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”
C.命题“在锐角△ABC中,有 sinA>cosB”为真命题
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,
平面
,底面
是菱形,
,
,
.
为
与
的交点,
为棱
上一点,
(1)证明:平面
⊥平面
;
(2)若三棱锥
的体积为
,
求证:
∥平面
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
+
=1(a>b>0)的两个焦点为F1、F2 , 且椭圆E过点(0,
),(
,﹣
),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S△
=
.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C(
,0),证明:|CM||CN|为定值,并求出该定值. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧棱垂直于底面,
,
,
,
,
分别为
,
的中点.
![]()
(1)求证:平面
平面
;
(2)求证:在棱
上存在一点
,使得平面
平面
;
(3)求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com