【题目】改革开放以来,我国经济持续高速增长
如图给出了我国2003年至2012年第二产业增加值与第一产业增加值的差值
以下简称为:产业差值
的折线图,记产业差值为
单位:万亿元
.
求出y关于年份代码t的线性回归方程;
利用
中的回归方程,分析2003年至2012年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34万亿元;
结合折线图,试求出除去2007年产业差值后剩余的9年产业差值的平均值及方差
结果精确到
.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
样本方差公式:
.
参考数据:
,
,
.
![]()
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将
的方程化为普通方程,将
的方程化为直角坐标方程;
(Ⅱ)已知直线
的参数方程为
,
为参数,且
,
与
交于点
,
与
交于点
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,点A(x1,y1)和点B(x2,y2)是单位圆x2+y2=1上两点,|AB|=1,则∠AOB=______;|y1+2|+|y2+2|的最大值为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”,讲的是西施浣纱的故事;“落雁”,指的就是昭君出塞的故事;“闭月”,是述说貂蝉拜月的故事;“羞花”,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,过点
,斜率为1的直线与抛物线
交于点
,
,且
.
(1)求抛物线
的方程;
(2)过点
作直线交抛物线
于不同于
的两点
、
,若直线
,
分别交直线
于
两点,求
取最小值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,点
是椭圆
上的一个动点,当直线
的斜率等于
时,
轴.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
的直线
与直线
相交于点
,试判断以
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com