精英家教网 > 高中数学 > 题目详情
抛物线y2=2x上的点P到直线y=x+4有最短的距离,则P的坐标是(  )
A、(1,
1
2
B、(0,0)
C、(
1
2
,1)
D、(
1
2
1
2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先设直线y=x+t是抛物线的切线,最小距离是两直线之间的距离,于抛物线方程联立消去y,再根据判别式等于0求得t,代入方程求得x,进而求得y,答案可得.
解答: 解:设直线y=x+t是抛物线的切线,最小距离是两直线之间的距离,
代入化简得x2+(2t-2)x+t2=0
由△=0得t=
1
2

代入方程得x=
1
2
,y=1,
∴P为(
1
2
,1),
故选:C.
点评:本题主要考查抛物线的应用和抛物线与直线的关系.考查了学生综合分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲袋中有4只白球,2只红球;乙袋中有3只白球,1只红球;现以掷骰子的方式确定从甲、乙哪个袋中取一球,若掷骰子朝上的点数是3的倍数则从甲袋中取,其余情况从乙袋中取,则取到的球是白球的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是(  )
A、S4=S1+S2+S3
B、S42=S12+S22+S32
C、S43=S13+S23+S33
D、S44=S14+S24+S34

查看答案和解析>>

科目:高中数学 来源: 题型:

“过原点的直线l交双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)于A,B两点,点P为双曲线上异于A,B的动点,若直线PA,PB的斜率均存在,则它们之积是定值
b2
a2
”.类比双曲线的性质,可得出椭圆的一个正确结论:过原点的直线l交椭圆
x2
a2
+
y2
b2
=1(a>b>0于A,B两点,点P为椭圆上异于A,B的动点,若直线PA,PB的斜率均存在,则它们之积是定值(  )
A、-
a2
b2
B、-
b2
a2
C、
b2
a2
D、
a2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,则下列说法中正确的个数是(  )
①当x=
3
2
时函数取得极小值;
②f(x)有两个极值点;
③x=2是函数的极大值点;
④x=1是函数的极小值点.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=5x3-2sin3x+tanx-6的图象的对称中心是(  )
A、(0,0)
B、(6,0)
C、(-6,0)
D、(0,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰直角三角形ABC中,D是斜边BC的中点,若AB=2,则
BA
AD
=(  )
A、-2B、3C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x(1+x),x<0
x(1-x),x>0
(  )
A、是奇函数
B、是偶函数
C、既是奇函数,又是偶函数
D、既不是奇函数,也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,表示同一个函数的是(  )
A、f(x)=x,g(x)=(
x
2
B、f(x)=x,g(x)=
x2
C、f(x)=x,g(x)=
x2
x
D、f(x)=x,g(x)=
3x3

查看答案和解析>>

同步练习册答案