精英家教网 > 高中数学 > 题目详情
19.曲线$y=\frac{x+1}{x-1}$在点(3,2)处的切线的方程为x+2y-7=0.

分析 由题意求出导数:y′=$\frac{-2}{{(x-1)}^{2}}$,进而根据切点坐标求出切线的斜率,即可求出切线的方程.

解答 解:由题意可得:y′=$\frac{-2}{{(x-1)}^{2}}$,
所以在点(3,2)处的切线斜率为-$\frac{1}{2}$,
所以在点(3,2)处的切线方程为:y=-$\frac{1}{2}$(x-3)+2.
即x+2y-7=0
故答案为:x+2y-7=0.

点评 此题考查学生熟练利用导数求曲线上过某点切线方程的斜率,能够根据一点坐标和斜率写出直线的方程,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三棱柱ABC-A1B1C1中,△ABC为正三角形,AA1⊥底面ABC,E是AB的中点,F是BC1的中点.下列命题正确的是①②③⑤(写出所有正确命题的编号).
①EF∥平面ACC1A1
②平面CEF⊥平面 ABB1A1
③平面CEF截该三棱柱所得大小两部分的体积比为11:1;
④若该三棱柱有内切球,则AB=$\sqrt{3}$BB1
⑤若BB1上有唯一点G,使得A1G⊥CG,则BB1=$\sqrt{2}$AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且Sn=n(n+1).
(1)求数列{an}的通项公式an
(Ⅱ)数列{bn}的通项公式bn=$\frac{1}{{a}_{n}•{a}_{n+2}}$,其前n项和为Tn,求证:${T_n}<\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(-2,0),B(0,-2),C(2sinθ,cosθ).
(Ⅰ)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求tanθ和$\frac{3sinθ-4cosθ}{4cosθ+3sinθ}$的值;
(Ⅱ)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的极坐标方程为ρsin(θ-$\frac{π}{3}$)=6,圆C的参数方程为$\left\{\begin{array}{l}{x=10cosθ}\\{y=10sinθ}\end{array}\right.$,(θ为参数).
(1)求直线l的直角坐标方成;
(2)求直线l被圆截得得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(0,1),离心为$\frac{\sqrt{2}}{2}$,过点B(0,-2)及左焦点F1的直线交椭圆于C、D两点,右焦点为F2
求:(1)椭圆的方程;
(2)三角形CDF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题p:已知f(x)=x2+(m2-1)x+(m-2)的一个零点比1大,一个零点比1小.
命题q:$\frac{1}{{m}^{2}}$-4m2≤-$\frac{3}{{x}^{2}}$-$\frac{2}{x}$+1在x∈[$\frac{3}{2}$,+∞)上恒成立.
若¬p为假命题,p∧q为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案