分析 (I)运用E是AD的中点,判断得出BE⊥AC,BE⊥面A1OC,考虑CD∥DE,即可判断CD⊥面A1OC.
(II)运用好折叠之前,之后的图形得出A1O是四棱锥A1-BCDE的高,平行四边形BCDE的面积S=BC•AB=a2,运用体积公式求解即可得出a的值.
解答 解:![]()
(I)在图1中,
因为AB=BC=$\frac{1}{2}AD$=a,E是AD的中点,
∠BAD=$\frac{π}{2}$,
所以BE⊥AC,
即在图2中,BE⊥A1O,BE⊥OC,
从而BE⊥面A1OC,
由CD∥BE,
所以CD⊥面A1OC,
(II)即A1O是四棱锥A1-BCDE的高,
根据图1得出A1O=$\frac{\sqrt{2}}{2}$AB=$\frac{\sqrt{2}}{2}$a,
∴平行四边形BCDE的面积S=BC•AB=a2,
V=$\frac{1}{3}×S×{A}_{1}O$=$\frac{1}{3}×{a}^{2}×\frac{\sqrt{2}}{2}$a=$\frac{\sqrt{2}}{6}$a3,
由a=$\frac{\sqrt{2}}{6}$a3=36$\sqrt{2}$,得出a=6.
点评 本题考查了平面立体转化的问题,运用好折叠之前,之后的图形,对于空间直线平面的位置关系的定理要很熟练.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 乘客 | P1 | P2 | P3 | P4 | P5 |
| 座位号 | 3 | 2 | 1 | 4 | 5 |
| 3 | 2 | 4 | 5 | 1 | |
| 3 | 2 | 4 | 1 | 5 | |
| 3 | 2 | 5 | 4 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8+2$\sqrt{2}$ | B. | 11+2$\sqrt{2}$ | C. | 14+2$\sqrt{2}$ | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{2}$ | B. | -2 | C. | $-\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com