精英家教网 > 高中数学 > 题目详情
某中学组织全校340名学生参加消防知识竞赛,成绩如图所示,其中得分在区间[90,100]内的人数为
 
考点:频率分布直方图
专题:概率与统计
分析:由频率分布图先求出得分在区间[90,100]内的频率,再求得分在区间[90,100]内的人数.
解答: 解:由频率分布图知:
得分在区间[90,100]内的频率为:0.010×10=0.1,
∴得分在区间[90,100]内的人数为:
340×0.1=34(人).
故答案为:34.
点评:本题考查频率分布直方图的应用,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,首项为a1,且1,an,Sn等差数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列{
1
an
}的前n项和,若对于?n∈N*,总有Tn
m-4
3
成立
,求其中m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(3-i)m-(1+i)对应的点在第三象限内,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,若∠C=90°,AC=b,BC=a,斜边AB上的高为h,则有结论h2=
a2b2
a2+b2
,运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,且三棱锥的直角顶点到底面的高为h,则有结论:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)对于任意x,有f(x+1)=-f(x),当x∈[-1,1]时,f(x)=x2,则函数y=f(x)的图象与函数y=|log6x|的图象的交点的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+|x3-2x2|≥ax-4在x∈[1,10]内恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有
 
个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在给定区间M上存在的正数t,使得对任意的x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,给出下列命题:
①函数f(x)=3x是R上的1级类增函数;
②若函数f(x)=R上单调递增,则f(x)一定为R上的t级类增函数;
③若函数f(x)=sinx+ax为[
π
2
,+∞]上的
π
3
级类增函数,则实数a的最小值为2;
④若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞).
其中正确的命题为
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2+
2
3
=2
2
3
3+
3
8
=3
3
8
4+
4
15
=4
4
15
,…,若
6+
a
b
=6
a
b
(a,b∈R),则(  )
A、a=5,b=24
B、a=6,b=24
C、a=6,b=35
D、a=5,b=35

查看答案和解析>>

同步练习册答案