精英家教网 > 高中数学 > 题目详情
1.某市为缓解交通压力,计划在某路段实施“交通限行”,为了解公众对该路段“交通限行”的态度,某机构从经过该路段的人员中随机抽查了40人进行调查,将调查情况进行整理,制成如表:
年龄(岁)[15,30)[30,45)[45,60)[60,75)
人数121387
赞成人数57x3
(Ⅰ)如果经过该路段人员对“交通限行”的赞成率为0.45,则x的值为;
(Ⅱ)在(Ⅰ)的条件下,若从年龄在[45,60),[60,75)两组赞成“交通限行”的人中再随机选取2人进行进一步的采访,记选中的2人至少有1人来自[60,75)年龄段为事件M,求事件M的概率.

分析 (1)通过样本中的赞成率在求解即可.
(2)设年龄在[45,60]的3位被调查者为A,B,C,年龄在[65,75]的3位被调查a,b,c,写出所有基本事件,事件M的个数,然后求解概率.

解答 解:(1)经过该路段人员中赞成的人数为5+7+x+3----------------(2分)
因此,样本中的赞成率为$\frac{5+7+x+3}{40}=0.45$-----------------(3分)
解得x=3-----------------(4分)
(2)设年龄在[45,60]的3位被调查者为A,B,C,年龄在[65,75]的3位被调查a,b,c,---------------(5分)
则从6位调查者中抽出2人包括:(a,b),(a,c),(a,A),(a,B),(a,C),(b,C),(b,A),(b,B),(b,C),(c,A),(c,B),(c,C),(A,B),(A,C),(B,C)共15个基本事件,且每个基本事件等可能.-----------------(8分)
其中事件M包括(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(c,A),(c,B),(c,C),(a,b),(a,c),(b,c)共12个基本事件,-------(11分)
根据古典概率模型公式得$p(M)=\frac{12}{15}=\frac{4}{5}$-----------------(13分)

点评 本题考查古典概型概率公式的求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,n∈N+,若an+1=2an+n+1,n∈N+,求数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示的焦点在x轴上的双曲线,则m的取值范围为m>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$f(x)=cos({2ωx+\frac{π}{4}})({x∈R,ω>0})$的最小正周期为π,将y=f(x)的图象上所有的点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变;再把所得的图象向右平移|φ|个单位长度,所得的图象关于原点对称,则φ的一个值是(  )
A.$\frac{3π}{16}$B.$\frac{5π}{16}$C.$\frac{3π}{4}$D.$\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}+2x,x≤0\\ ln(x+1),x>0\end{array}\right.$,若|f(x)|≥2ax,则a的取值范围是(  )
A.(-∞,0]B.[-2,1]C.[-2,0]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知∠ACB=90°,CA=3,CB=4,点E是边AB的中点,则$\overrightarrow{CE}$•$\overrightarrow{AB}$=(  )
A.2B.$\frac{7}{2}$C.$\sqrt{7}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若向量$\overrightarrow{BA}$,$\overrightarrow{BC}$的夹角为60°,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,且AD=2.∠ADC=120°,则$|{\overrightarrow{BA}+\overrightarrow{BC}}|$=(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知⊙O的直径AB=8,⊙B与⊙O相交于点C、D,⊙O的直径CF与⊙B相交于点E,设⊙B的半径为x,OE的长为y.
(1)如图,当点E在线段OC上时,求y关于x的函数解析式,并写出定义域;
(2)当点E在直径CF上时,如果OE的长为3,求公共弦CD的长;
(3)设⊙B与AB相交于G,试问△OEG能否为等腰三角形?如果能,请直接写出$\widehat{BC}$的长度(不必写过程);如果不能,请简要说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  )
A.$\frac{{4\sqrt{2}}}{3}$B.$\frac{8}{3}$C.$\frac{{8\sqrt{2}}}{3}$D.8

查看答案和解析>>

同步练习册答案