精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角β为$\frac{5π}{6}$.

分析 根据两向量垂直时数量积为0列出关系式,将两向量的模代入求出夹角即可.

解答 解:∵($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=0,即$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=0,
∵|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,
∴2×$\sqrt{3}$cosβ+3=0,即cosβ=-$\frac{\sqrt{3}}{2}$,
则$\overrightarrow{a}$ 与$\overrightarrow{b}$的夹角β为$\frac{5π}{6}$,
故答案为:$\frac{5π}{6}$

点评 此题考查了平面向量数量积的运算,熟练掌握平面向量的数量积法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求证:函数f(x)的图象在y轴的一侧;
(2)设A(x1,y1),B(x2,y2)是函数f(x)的图象上任意两个不同的点,且x1<x2,求证:y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x(m),三块种植植物的矩形区域的总面积为S(m2).
(1)求S关于x的函数关系式;
(2)求S的最大值,及此时长X的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$f(x)=\overrightarrow a•\overrightarrow b$,其中向量$\overrightarrow a=({\sqrt{3}sin2x,1}),\overrightarrow b=({1,cos2x})$(x∈R),
(1)求函数y=f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知f (A)=2,a=$\sqrt{7}$,b=$\sqrt{3}$,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数$f(x)=\frac{a}{3}{x^3}+b{x^2}+cx+d\;\;({a>0})$,且方程f'(x)-9x=0的两个根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在R上单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等边三角形ABC的边长为1,BC上的高为AD,沿高AD折成直二面角,则A到BC的距离是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个空间几何体的三视图,则该空间几何体的表面积是(  )
A.$({8+2\sqrt{5}})π$B.$({9+2\sqrt{5}})π$C.$({10+2\sqrt{5}})π$D.$({8+2\sqrt{3}})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程|lnx|=kx+1在(0,e3)上有三个不等实根,则实数k的取值范围是(  )
A.$({0,\frac{2}{e^3}})$B.$({\frac{3}{e^3},\frac{2}{e^2}})$C.$({\frac{2}{e^3},\frac{1}{e^2}})$D.$[{\frac{2}{e^3},\frac{1}{e^2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=lnx+$\frac{1}{2}{x^2}$+ax存在与直线3x-y=0平行的切线,则实数a的取值范围是(-∞,1].

查看答案和解析>>

同步练习册答案