分析 (1)由ax-1>0得:ax>1,a>1时,函数f(x)的图象在y轴的右侧;当0<a<1时,x<0,函数f(x)的图象在y轴的左侧.所以函数f(x)的图象在y轴的一侧.
(2)由于x1<x2,y1-y2=${log}_{a}\frac{{a}^{{x}_{1}}-1}{{a}^{{x}_{2}}-1}$,再分a>1和0<a<1两种情况分别进行讨论,可证得结论.
解答 证明:(1)由ax-1>0得:ax>1,
当a>1时,x>0,即函数f(x)的定义域为(0,+∞),
此时函数f(x)的图象在y轴的右侧;
当0<a<1时,x<0,即函数f(x)的定义域为(-∞,0),
此时函数f(x)的图象在y轴的左侧.
所以函数f(x)的图象在y轴的一侧;
(2)当x1<x2时,y1-y2=${log}_{a}({a}^{{x}_{1}}-1)$-${log}_{a}({a}^{{x}_{2}}-1)$=${log}_{a}\frac{{a}^{{x}_{1}}-1}{{a}^{{x}_{2}}-1}$
①当a>1时,由(1)知0<x1<x2,
∴1<ax1<ax2,
∴0<ax1-1<ax2-1,
∴0<$\frac{{a}^{{x}_{1}}-1}{{a}^{{x}_{2}}-1}$<1,
∴y1-y2<0,
②当0<a<1时,由(1)知x1<x2<0,
∴ax1>ax2>1,
∴ax1-1>ax2-1>0,
∴$\frac{{a}^{{x}_{1}}-1}{{a}^{{x}_{2}}-1}$>1,
∴y1-y2<0,
综上可得:y1<y2.
点评 本题考查对数函数的性质和综合应用,解题时注意分类讨论思想的合理应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com