精英家教网 > 高中数学 > 题目详情
17.计算:
(1)log535-2log5$\frac{7}{3}$+log57-log51.8;
(2)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$;
(3)(1g5)2+1g2•lg50.

分析 利用对数的运算性质即可得出.

解答 解:(1)原式=$lo{g}_{5}\frac{35×7}{\frac{49}{9}×1.8}$=$lo{g}_{5}{5}^{2}$=2.
(2)原式=$\frac{lg\frac{\sqrt{27}×8}{\sqrt{1000}}}{lg1.2}$=$\frac{lg(1.2)^{\frac{3}{2}}}{lg1.2}$=$\frac{3}{2}$.
(3)原式=lg25+lg2(1+lg5)
=lg5(lg5+lg2)+lg2
=lg5+lg2=1.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则(∁UA)∪B={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定义域上恰有三个零点,则实数a的取值范围是(  )
A.0<a<$\frac{16}{3}$B.a<$\frac{16}{3}$C.a<0或a>$\frac{16}{3}$D.a≤$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设动点P(x,y)满足$\left\{\begin{array}{l}{2x+y≤40}\\{x+2y≤50}\\{x≥0}\\{y≥0}\end{array}\right.$,则z=x+y的最大值是(  )
A.10B.30C.20D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过椭圆$\frac{x^2}{4}$+${\frac{y}{3}^2}$=1的右焦点作斜率为2的直线交椭圆于A,B两点,求线段|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求证:函数f(x)的图象在y轴的一侧;
(2)设A(x1,y1),B(x2,y2)是函数f(x)的图象上任意两个不同的点,且x1<x2,求证:y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=Asin(2ωx+φ)(ω>0),若f(x+$\frac{π}{6}$)是周期为π的偶函数,则φ的一个可能值是(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.πD.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=log2x-1$\sqrt{3x-2}$的定义域是($\frac{2}{3}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数$f(x)=\frac{a}{3}{x^3}+b{x^2}+cx+d\;\;({a>0})$,且方程f'(x)-9x=0的两个根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在R上单调,求实数a的取值范围.

查看答案和解析>>

同步练习册答案