精英家教网 > 高中数学 > 题目详情
6.函数y=log2x-1$\sqrt{3x-2}$的定义域是($\frac{2}{3}$,1)∪(1,+∞).

分析 根据对数函数以及二次根式的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{3x-2>0}\\{2x-1>0}\\{2x-1≠1}\end{array}\right.$,解得:x>$\frac{2}{3}$且x≠1,
故答案为:($\frac{2}{3}$,1)∪(1,+∞).

点评 本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.命题“?x∈N*,f(n)∈N* 且f(n)≤n的否定形式是?x∈N*,f(n)∉N*或f(n)>n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)log535-2log5$\frac{7}{3}$+log57-log51.8;
(2)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$;
(3)(1g5)2+1g2•lg50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:函数y=log2(ax-1)在区间[1,2]内单调递增,命题q:“?x∈R,ax2-2ax+3>0”
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知指数函数的图象过点M(3,8),求f(4)、f(-4)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算log2.56.25+lg0.01+ln$\sqrt{e}$-2${\;}^{1+lo{g}_{2}3}$
(2)已知tanα=-3,且α是第二象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若f(a)=1,则实数a=0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|2x-1|.
(1)在答题卷该题图中画出y=f(x)的图象;
(2)求不等式f(x)+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)满足对?x∈R,f(-x)+f(x)=0,且x≥0时,f(x)=ex+m(m为常数),则f(-ln5)的值为(  )
A.4B.-4C.6D.-6

查看答案和解析>>

同步练习册答案