分析 (1)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;
(2)求出f(x)=-1时x的值,即可求f(x)>-1.
解答 解:(1)$f(x)=\left\{\begin{array}{l}x-2,x<-1\\ 3x,-1≤x<\frac{1}{2}\\-x+2,x≥\frac{1}{2}\end{array}\right.$…(3分)
如图所示:
…(7分)
(2)f(x)>-1
由-x+2=-1,得x=3,
由3x=-1,得$x=-\frac{1}{3}$,…(9分)
∵f(x)>-1,∴$-\frac{1}{3}<x<3$…(11分)
所以,不等式的解集为$(-\frac{1}{3},3)$…(12分)
点评 本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 30 | C. | 20 | D. | 90 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
| C. | y=4x+2x,x∈[0,+∞) | D. | y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({8+2\sqrt{5}})π$ | B. | $({9+2\sqrt{5}})π$ | C. | $({10+2\sqrt{5}})π$ | D. | $({8+2\sqrt{3}})π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{4\sqrt{6}}{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com