精英家教网 > 高中数学 > 题目详情
5.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-3y=0的一条切线,A为切点,若PA长度的最小值为2,则k的值为(  )
A.3B.$\frac{4\sqrt{6}}{5}$C.$\sqrt{2}$D.2

分析 由圆的方程为求得圆心C,半径r,由“圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后利用点到直线的距离求出直线的斜率即可.

解答 解:∵圆的方程为:x2+(y-$\frac{3}{2}$)2=$\frac{9}{4}$,
∴圆心C(0,$\frac{3}{2}$),半径r=$\frac{3}{2}$.
根据题意,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小.切线长为2,
∴PA=PB═2,
∴圆心到直线l的距离为d=$\sqrt{4+\frac{9}{4}}$=$\frac{5}{2}$.
∵直线kx+y+4=0,
∴$\frac{|0+\frac{3}{2}+4|}{\sqrt{{k}^{2}+1}}$=$\frac{5}{2}$,解得k=±$\frac{4\sqrt{6}}{5}$,
∵k>0,∴所求直线的斜率为$\frac{4\sqrt{6}}{5}$.
故选B

点评 本题的考点是直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,解题的关键是“圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|2x-1|.
(1)在答题卷该题图中画出y=f(x)的图象;
(2)求不等式f(x)+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)满足对?x∈R,f(-x)+f(x)=0,且x≥0时,f(x)=ex+m(m为常数),则f(-ln5)的值为(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a1+a2=1,a4+a5=-8,则$\frac{{{a_7}+{a_8}}}{{{a_5}+{a_6}}}$=(  )
A.-8B.-4C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A、B、C对应的边分别为a,b,c,分别根据下列条件解三角形,其中有两个解的是(  )
A.a=30,b=40,A=30°B.a=25,b=30,A=150°
C.a=8,b=16,A=30°D.a=72,b=60,A=135°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过两直线3x+y-5=0,2x-3y+4=0的交点,且在两坐标轴上截距相等的直线方程为2x-y=0或x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1、F2分别为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,若双曲线C右支上一点P满足|PF1|=3|PF2|且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=a2,则双曲线C的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=1,$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=2,则<$\overrightarrow{a}$,$\overrightarrow{b}$>值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于方程(m-1)x2+(3-m)y2=(m-1)(3-m),m∈R所表示的曲线C的性状,下列说法正确的是(  )
A.对于?m∈(1,3),曲线C为一个椭圆B.?m∈(-∞,1)∪(3,+∞)使曲线C不是双曲线
C.对于?m∈R,曲线C一定不是直线D.?m∈(1,3)使曲线C不是椭圆

查看答案和解析>>

同步练习册答案