精英家教网 > 高中数学 > 题目详情
15.关于方程(m-1)x2+(3-m)y2=(m-1)(3-m),m∈R所表示的曲线C的性状,下列说法正确的是(  )
A.对于?m∈(1,3),曲线C为一个椭圆B.?m∈(-∞,1)∪(3,+∞)使曲线C不是双曲线
C.对于?m∈R,曲线C一定不是直线D.?m∈(1,3)使曲线C不是椭圆

分析 对于所给的方程,当m=1、m=3时,易得方程表示的图形;当m≠1,且 m≠3时,方程即$\frac{{x}^{2}}{m-3}+\frac{{y}^{2}}{m-1}$=1,再分3-m=m-1、(3-m)(m-1)大于零、小于零三种情况,分别求得方程表示的曲线形状,综合可得结论.

解答 解:对于方程(m-1)x2+(3-m)y2=(m-1)(3-m),①当m=1时,方程即2y2=0,即 y=0,表示x轴;
②当m=3时,方程即2x2=0,即 x=0,表示y轴;
③当m≠1,且 m≠3时,方程即$\frac{{x}^{2}}{m-3}+\frac{{y}^{2}}{m-1}$=1,
若3-m=m-1,即m=2时,方程即为圆:x2+y2=1,表示一个单位圆; 
若(3-m)(m-1)<0,即m>3或者m<1时,方程表示双曲线;
若(3-m)(m-1)>0且3-m≠m-1,即1<m<3,且m≠2时,方程表示椭圆.
综合可得:当m=1,方程表示x轴,当m=3;方程表示y轴;当m=2时,方程表示圆;当1<m<3且不等于2时,方程表示椭圆;
当m>3或者m<1时,方程表示双曲线.
故选D.

点评 本题主要考查二元二次方程表示圆的条件,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-3y=0的一条切线,A为切点,若PA长度的最小值为2,则k的值为(  )
A.3B.$\frac{4\sqrt{6}}{5}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={a,b,c,d,e},集合M={a,b,c},N={a,c,e},那么∁UM∩∁UN=(  )
A.B.{d}C.{a,c}D.{b,e}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:
时间t$\frac{1}{2}$24
高度h102517
( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt,确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为[-2,1],函数g(x)=$\frac{f(x-1)}{\sqrt{2x+1}}$,则g(x)的定义域为(  )
A.(-$\frac{1}{2}$,2]B.(-1,+∞)C.(-$\frac{1}{2}$,0)∪(0,2)D.(-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=|x|的单调递增区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前n项和为Sn,若S25=100,则a12+a14为(  )
A.4B.8C.16D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a${\;}^{\frac{1}{2}}$=4(a>0),则log2a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在三棱锥P-ABC中,PA⊥平面ABC,△ABC为正三角形,D、E分别为BC、CA的中点,F为CD的中点.若在线段PB上存在一点Q,使得平面ADQ∥平面PEF.
(1)求$\frac{PQ}{QB}$的值;
(2)设AB=PA=4,求三棱锥Q-PEF的体积;
(3)在第2问的前提下,若平面QEF与线段PA交于点M,求AM.(注:本小问文科生不做,理科生做)

查看答案和解析>>

同步练习册答案