| A. | 0<a<$\frac{16}{3}$ | B. | a<$\frac{16}{3}$ | C. | a<0或a>$\frac{16}{3}$ | D. | a≤$\frac{16}{3}$ |
分析 根据函数的单调性画出函数的图象,及题意其定义域R上有3个零点,函数f(x)在(-1,0)内有一个零点,在区间(0,+∞)上必须有2个零点,
即可求出a的取值范围.
解答
解:①当x≤0时,f(x)=x+3x.
∵函数y=x与y=3x在x≤0时都单调递增,
∴函数f(x)=x+3x在区间(-∞,0]上也单调递增,又f(-1)=-$\frac{2}{3}<0$,f(0)=1>0,
所以函数f(x)在(-1,0)内有一个零点,如图所示.
②当x>0时,f(x)=$\frac{1}{3}{x}^{3}-4x+a..(x>0)$,∴f′(x)=x2-4=(x+2)(x-2).
令f′(x)=0,且x>0,解得x=2.
当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.
∴函数f(x)在区间(0,2)上单调递减;在区间(2,+∞)上单调递增.
∴函数f(x)在x=2时求得极小值,也即在x>0时的最小值.
∵函数f(x)在其定义域R上有3个零点,且由(1)可知在区间(-1,0)内已经有一个零点了,所以在区间(0,+∞)上必须有2个零点,
当a≤0时,函数f(x)在(0,+∞)上只有1个零点,
∴必须满足a>0且f(2)<0,解得0<a$<\frac{16}{3}$
故选:A.
点评 本题考查函数零点判定定理,考查了数形结合的解题思想方法,是中档题
科目:高中数学 来源: 题型:解答题
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=-2x+1 | B. | f(x)=-x2 | C. | f(x)=-$\frac{1}{x}$ | D. | f(x)=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com