精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{x}{{x}^{2}+1}$的定义域为(-1,1),
(1)证明f(x)在(-1,1)上是增函数;
(2)解不等式f(2x-1)+f(x)<0.

分析 (1)根据增函数的定义,设任意的x1,x2∈(-1,1),并且x1<x2,然后作差,通分,提取公因式,证明f(x1)<f(x2),从而得出f(x)在(-1,1)上是增函数;
(2)容易判断f(x)为奇函数,从而由f(2x-1)+f(x)<0便可得到f(2x-1)<f(-x),根据f(x)在(-1,1)上是增函数,便可得到$\left\{\begin{array}{l}{-1<2x-1<1}\\{-1<-x<1}\\{2x-1<-x}\end{array}\right.$,解该不等式组便可得出原不等式的解集.

解答 解:(1)证明:设-1<x1<x2<1,则:
$f({x}_{1})-f({x}_{2})=\frac{{x}_{1}}{{{x}_{1}}^{2}+1}-\frac{{x}_{2}}{{{x}_{2}}^{2}+1}$
=$\frac{({x}_{1}-{x}_{2})(1-{x}_{1}{x}_{2})}{(1+{{x}_{1}}^{2})(1+{{x}_{2}}^{2})}$;
∵-1<x1<x2<1;
∴x1-x2<0,1-x1x2>0,$(1+{{x}_{1}}^{2})(1+{{x}_{2}}^{2})>0$;
∴f(x1)-f(x2)<0,即f(x1)<f(x2);
∴f(x)在(-1,1)上是增函数;
(2)f(x)显然为奇函数;
∴由f(2x-1)+f(x)<0得,f(2x-1)<-f(x);
∴f(2x-1)<f(-x);
由(1)知f(x)在(-1,1)上是增函数,则:
$\left\{\begin{array}{l}{-1<2x-1<1}\\{-1<-x<1}\\{2x-1<-x}\end{array}\right.$;
解得$0<x<\frac{1}{3}$;
∴原不等式的解集为$(0,\frac{1}{3})$.

点评 考查增函数的定义,根据增函数定义证明一个函数为增函数的方法和过程,奇函数的定义,根据函数单调性解不等式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=|x|,g(x)=($\sqrt{x}$)2
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分别为B1C1、AA1的中点.
(1)求证:平面ABC1⊥平面AA1C1C;
(2)求证:MN∥平面ABC1,并求M到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1=0,an+1=an+2n,那么a2017的值是(  )
A.20162B.2014×2015C.2015×2016D.2016×2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则(∁UA)∪B={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.A、B、C是三个命题,如果A是B的充要条件,C是B的充分不必要条件,则C是A的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.动点P(x,y)满足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥0}\\{x+y-3≥0}\end{array}\right.$,则z=x+2y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a∈R,则“a=0”是“cosa>sina”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求证:函数f(x)的图象在y轴的一侧;
(2)设A(x1,y1),B(x2,y2)是函数f(x)的图象上任意两个不同的点,且x1<x2,求证:y1<y2

查看答案和解析>>

同步练习册答案