精英家教网 > 高中数学 > 题目详情
6.已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am-1=0,S2m-1=39.则m等于(  )
A.19B.39C.10D.20

分析 由等差数列的性质和已知可得am=1,再由求和公式和性质可得S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=39,代值解关于m的方程可得.

解答 解:∵am-1+am+1-am-1=0,
∴由等差数列的性质可得am-1+am+1=2am
代入上式可得2am-am-1=0,解得am=1,
∴S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=39,
∴$\frac{(2m-1)×2{a}_{m}}{2}$=(2m-1)am=39,
∴2m-1=39,解得m=20
故选:D

点评 本题考查等差数列的求和公式和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}通项公式an=4n-3.
(1)求{an}的前四项,
(2)求公差d;
(3)求前六项和S6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知P是抛物线C:y=x2上一点,则点P到直线y=x-3的最短距离为$\frac{11\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,点A,B分别是椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF,设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|.
(1)求点P的坐标;
(2)求点M的坐标;
(3)求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2($\frac{A+B}{2}$)+3cos2C=3.
(1)求cosC;
(2)若B=$\frac{π}{2}$,2$\overrightarrow{AM}$=$\overrightarrow{MC}$,求tan∠ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,
(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前2015项和T2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了3个伙伴;第2天,4只蜜蜂飞出去,各自找回了3个伙伴如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中蜜蜂的总只数为(  )
A.243B.729C.1024D.4096

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,$\frac{{a}_{9}}{{a}_{8}}$<-1,若它的前n项和Sn有最大值,则使Sn>0成立的最大自然数n的值为(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.n=${∫}_{0}^{2}$(3x2-1)dx,则二项式(x-$\frac{1}{{x}^{2}}$)n展开式中的常数项为(  )
A.15B.20C.25D.70

查看答案和解析>>

同步练习册答案