精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}通项公式an=4n-3.
(1)求{an}的前四项,
(2)求公差d;
(3)求前六项和S6

分析 (1)直接在通项公式中取n=4得答案;
(2)由d=a2-a1求得公差;
(3)直接由等差数列的前n项和求S6值.

解答 解:(1)由an=4n-3,得a4=4×4-3=13;
(2)d=a2-a1=(4×2-3)-(4×1-3)=4;
(3)a1=4×1-3=1,又d=4,∴${S}_{6}=6×1+\frac{6×5×4}{2}=66$.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.解方程:x4(1+lgx)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,已知a1=2,an+1=2an-n+1,n∈N*
(1)求证:{an-n}是等比数列;
(2)令bn=$\frac{{a}_{n}}{{2}^{n}}$,Sn为数列{bn}的前n项和,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某研究机构抽取五名高三学生甲、乙、丙、丁、戊,对他们的记忆力x和判断力y进行统计分析,得到的结果如表所示,根据表中的数据回答下列问题:
编号
x68101214
y23456
(1)从这五名学生中任选两名,求选出的两名学生的记忆力均超过8的概率;
(2)求记忆力x和判断力y的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并据此推测记忆力为20的学生的判断力大约是多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-6,-8),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下列写法是否正确,说明理由
①{(1,2)}={(2,1)}={(x,y)|x=1,或y=2}={1,2}
②{y|y=-x2+2,x∈R}∩{y|y=-x+2,x∈R}={(0,2),(1,1)}
③0∈∅,∅?{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点(-2,-1)到直线l(1+3a)x+(1+2a)y=2+5a的距离为d,则d的取值范围为[0,$\sqrt{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.椭圆$\frac{x^2}{9}+{y^2}=1$的离心率e=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am-1=0,S2m-1=39.则m等于(  )
A.19B.39C.10D.20

查看答案和解析>>

同步练习册答案