精英家教网 > 高中数学 > 题目详情
9.求下列函数的定义域
(1)y=log2(5+4x-x2)+$\frac{1}{{2}^{x}-8}$;
(2)y=$\frac{1}{\sqrt{1{-0.5}^{x}}}$+lg(2-x)

分析 根据函数y的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:(1)∵y=log2(5+4x-x2)+$\frac{1}{{2}^{x}-8}$,
∴$\left\{\begin{array}{l}{5+4x{-x}^{2}>0}\\{{2}^{x}-8≠0}\end{array}\right.$,
解得-1<x<5且x≠3,
∴该函数的定义域为{x|-1<x<5且x≠3};
(2)∵y=$\frac{1}{\sqrt{1{-0.5}^{x}}}$+lg(2-x),
∴$\left\{\begin{array}{l}{1{-0.5}^{x}>0}\\{2-x>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{{0.5}^{x}<1}\\{x<2}\end{array}\right.$,
解得0<x<2,
∴函数y的定义域为(0,2).

点评 本题考查了根据函数的解析式求函数定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),则函数f(x)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=30°,则△ABC的面积为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{x,x>0}\\{1-x,x<0}\end{array}\right.$,则有(  )
A.f(f(x))=(f(x))2B.f(f(x))=f(x)C.f(f(x))>f(x)D.f(f(x))<f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若lg(lnx)=0,则x=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)log2.56.25+lg$\frac{1}{100}$+ln$\sqrt{e}$+${2}^{1+lo{g}_{2}3}$
(2)0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)2+256${\;}^{\frac{3}{4}}$-3-1+(2-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,E,F分别是正方体ABCD-A1B1C1D1中BB1,B1C1的中点,计算:
(1)EF与CD1所成的角;
(2)EF与AD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=a-bsin(4x-$\frac{π}{3}$)的最大值是5,最小值是1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-x,其中a≠0.
(1)求f(x)的单调区间;
(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)与f(x2)互为相反数,求a的值.

查看答案和解析>>

同步练习册答案