精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),则函数f(x)的大致图象是(  )
A.B.C.D.

分析 由题意可得函数f(x)的图象关于原点对称,函数在R上单调递增,且增长比较缓慢,从而结合选项得出结论

解答 解:由函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),
可得函数f(x)的图象关于原点对称,函数在R上单调递增,且增长比较缓慢,
结合所给的选项,
故选:A.

点评 本题主要考查函数的奇偶性、单调性的应用,函数的图象特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+2xsinθ-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(Ⅰ)当sinθ=-$\frac{1}{2}$,求f(x)的最大值和最小值;
(Ⅱ)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,三内角A,B,C的对边分别为a,b,c,
命题p:若a>acosB+bcosA,则A>C;
命题q:若A>B,则sinA>sinB,
给出下列四个结论:
①命题q的逆命题、否命题、逆否命题是真命题;
②命题“p∧q”是假命题;
③命题“p∨¬q”是假命题;
④命题“¬p∨¬q”是假命题,
其中所有正确结论法的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-1{,_{\;}}x≤0\\ x-1{,_{\;}}x>0\end{array}\right.$,g(x)=2x-1,则f(g(2))=2,f[g(x)]的值域为[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,b=($\frac{1}{3}$)${\;}^{\frac{2}{3}}$,c=($\frac{2}{3}$)${\;}^{\frac{2}{3}}$,则a,b,c大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=-$\frac{\sqrt{10}}{10}$,且α∈(π,$\frac{3π}{2}$),则tan2α=(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小值.
(I)求ϕ的值,并化简f(x);
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=sin(x+$\frac{2}{3}$π)在[0,2π]上的单调递增区间是[$\frac{5π}{6}$,$\frac{11π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域
(1)y=log2(5+4x-x2)+$\frac{1}{{2}^{x}-8}$;
(2)y=$\frac{1}{\sqrt{1{-0.5}^{x}}}$+lg(2-x)

查看答案和解析>>

同步练习册答案