精英家教网 > 高中数学 > 题目详情
20.已知在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=30°,则△ABC的面积为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

分析 由已知直接利用公式S=$\frac{1}{2}ac•sinB$得答案.

解答 解:在△ABC中,由a=1,c=2,B=30°,
得${S}_{△ABC}=\frac{1}{2}ac•sinB=\frac{1}{2}×1×2×sin30°=\frac{1}{2}$.
故选:A.

点评 本题考查利用正弦定理求面积,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,三内角A,B,C的对边分别为a,b,c,
命题p:若a>acosB+bcosA,则A>C;
命题q:若A>B,则sinA>sinB,
给出下列四个结论:
①命题q的逆命题、否命题、逆否命题是真命题;
②命题“p∧q”是假命题;
③命题“p∨¬q”是假命题;
④命题“¬p∨¬q”是假命题,
其中所有正确结论法的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小值.
(I)求ϕ的值,并化简f(x);
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=sin(x+$\frac{2}{3}$π)在[0,2π]上的单调递增区间是[$\frac{5π}{6}$,$\frac{11π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的三个顶点为A(4,0),B(8,10),C(0,6),求:
(1)BC边上的高所在的直线方程;
(2)过C点且平行于AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面上三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$的模均为1,它们之间的夹角均为120°,求证:$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆G$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点,A为椭圆G的左顶点,已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆G的离心率;
(Ⅱ)过F2的直线m:x=1与椭圆G相交于点M(M点在第一象限),平行于AM的直线l与椭圆G交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域
(1)y=log2(5+4x-x2)+$\frac{1}{{2}^{x}-8}$;
(2)y=$\frac{1}{\sqrt{1{-0.5}^{x}}}$+lg(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和Sn=An2,且a3+a5=28,则实数A等于(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

同步练习册答案