精英家教网 > 高中数学 > 题目详情
4.若lg(lnx)=0,则x=e.

分析 根据对数函数的性质即可求出方程的解.

解答 解:lg(lnx)=0=ln1,
∴lnx=1=lne,
∴x=e,
故答案为:e.

点评 本题考查了对数方程的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设a=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,b=($\frac{1}{3}$)${\;}^{\frac{2}{3}}$,c=($\frac{2}{3}$)${\;}^{\frac{2}{3}}$,则a,b,c大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的三个顶点为A(4,0),B(8,10),C(0,6),求:
(1)BC边上的高所在的直线方程;
(2)过C点且平行于AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆G$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点,A为椭圆G的左顶点,已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆G的离心率;
(Ⅱ)过F2的直线m:x=1与椭圆G相交于点M(M点在第一象限),平行于AM的直线l与椭圆G交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x-1)=ln$\frac{x}{x-2}$.若f(g(x))=lnx,则g(x)=(  )
A.$\frac{x-1}{x+1}$B.$\frac{x+1}{x-1}$C.$\frac{1-x}{1+x}$D.$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域
(1)y=log2(5+4x-x2)+$\frac{1}{{2}^{x}-8}$;
(2)y=$\frac{1}{\sqrt{1{-0.5}^{x}}}$+lg(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设动直线x=m与函数f(x)=x,g(x)=lnx的图象分别交于点M,N,则|MN|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如果α是第三象限角,那么-α,$\frac{α}{2}$,2α的终边在第几象限?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(x,y),记$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ.若对所有满足不等式|x-2|≤y≤1的x,y,都有θ∈(0,$\frac{π}{2}$),则实数k的取值范围是(  )
A.(-1,+∞)B.(-1,0)∪(0,+∞)C.(1,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

同步练习册答案