精英家教网 > 高中数学 > 题目详情
15.已知抛物线的准线方程x=$\frac{1}{2}$,则抛物线的标准方程为(  )
A.x2=2yB.x2=-2yC.y2=xD.y2=-2x

分析 由抛物线的准线方程求得p,进一步得到抛物线方程.

解答 解:∵抛物线的准线方程x=$\frac{1}{2}$,
可知抛物线为焦点在x轴上,且开口向左的抛物线,
且$\frac{p}{2}=\frac{1}{2}$,则p=1.
∴抛物线方程为y2=-2x.
故选:D.

点评 本题考查了抛物线的简单性质,考查了抛物线方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点为(2,0),则椭圆的短轴长为(  )
A.2B.4C.6D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若$\overrightarrow{AP}$=$\sqrt{2}$$\overrightarrow{PB}$,则椭圆的离心率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆W:$\frac{x^2}{4}$+y2=1,直线l过点(0,-2)与椭圆W交于两点A,B,O为坐标原点.
(Ⅰ)设C为AB的中点,当直线l的斜率为$\frac{3}{2}$时,求线段OC的长;
(Ⅱ)当△OAB面积等于1时,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx图象与直线x-y-4=0相切于(1,f(1))
(1)求实数a,b的值;
(2)若方程f(x)=m-7x有三个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,程序框图(算法流程图)的输出值x为12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某地近几年粮食需求量逐年上升,如表是部分统计数据:
年份  20062008  20102012  2014
 年需求量(万吨)257  276286  298318 
(1)利用所给数据求年需求量与年份之间的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:$\widehat{b}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)({y}_{1}-y)}{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}{y}_{1})-nxy}{\underset{\stackrel{n}{∑}}{n+1}{x}_{1}^{2}-n{x}^{2}}$,$\widehat{a}$=$\widehat{y}-\widehat{b}x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.己知C是半径为1、圆心角为60°的圆弧上的动点,如图,若$\overrightarrow{OC}$=x$\overline{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,则x+y的最大值是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.2D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=4,AD=2,PD⊥面ABCD,直线PA与直线BC所成角大小为60°,求直线PB与直线AC所成角的大小.

查看答案和解析>>

同步练习册答案