精英家教网 > 高中数学 > 题目详情
某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比.如图所示的是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图.那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)(  )
A、18篇B、24篇
C、25篇D、27篇
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,利用频率=
频数
样本容量
,求出答案即可.
解答: 解:分数大于或等于80分的调查报告的频率为
1-(0.005+0.015+0.035)×10=0.45
∴对应的调查报告数为
60×0.45=27篇.
故选:D.
点评:本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知矩阵A的逆矩阵A-1=
2
2
2
2
-
2
2
2
2

(Ⅰ)求矩阵A;
(Ⅱ)求曲线xy=1在矩阵A所对应的线性变换作用下所得的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,其中一个焦点坐标为(
2
,0),离心率为
6
3
,离心率为
6
3

(1)求椭圆C的方程;
(2)已知向量
OB
=(0,-1),是否存在斜率为k(k≠0)的直线l.l与曲线C相交于M,N两点,使向量
BM
与向量
BN
的夹角为60°,且|
BM
|=|
BN
|?若存在,求出k值,并写出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,侧面PAD与底面ABCD互相垂直,且所有棱长均为2,AC∩BD=O.
(Ⅰ)若AB⊥AD,过点O作平面α与平面PBC平行,求所得截面的面积;
(Ⅱ)若BD=2,二面角A-PC-B的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷六个面分别记有1,2,2,3,3,3的两颗骰子
(1)求所出现的点数均为2的概率;
(2)求所出现的点数之和为4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)-f(y)=f(
x-y
1-xy
);当x∈(-1,0)时f(x)>0.若P=f(
1
5
)+f(
1
11
),Q=f(
1
2
),R=f(0);则P,Q,R的大小关系为(  )
A、P<Q<R
B、R<Q<P
C、R<P<Q
D、Q<P<R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,且当x>0时,有f(x)>1.
(1)求f(0);
(2)求证:f(x)在R上为增函数;
(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=
3+4an
2+an
,证明:对?n∈N*,有2≤an<an+1<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域是R,对于任意的x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)用函数单调性的定义证明函数f(x)为增函数.

查看答案和解析>>

同步练习册答案