精英家教网 > 高中数学 > 题目详情
如图,△ABC中,|AB|=4,|AC|=3,若P为线段BC的垂直平分线上的动点,则
AP
•(
AB
-
AC
)
的值为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:解:设BC的中点为D,则由题意可得
AD
=
1
2
(
AB
+
AC
)
AP
=
AD
+
DP
DP
•(
AB
-
AC
)=
DP
CB
=0

化简
AP
•(
AB
-
AC
)=(
AD
+
DP
)•(
AB
-
AC
)
1
2
(|AB|2-|AC|2)
,从而求得结果.
解答: 解:设BC的中点为D,则
AD
=
1
2
(
AB
+
AC
)
AP
=
AD
+
DP

可得
DP
•(
AB
-
AC
)=
DP
CB
=0

AP
•(
AB
-
AC
)=(
AD
+
DP
)•(
AB
-
AC
)
=
DP
•(
AB
-
AC
)+
1
2
(
AB
+
AC
)•(
AB
-
AC
)
=
1
2
(|AB|2-|AC|2)=
7
2

故答案为:
7
2
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,f(x)=
2x
x2+1
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
(1)命题“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
(3)对于函数f(x)=
ax
1+|x|
(a∈R且a≠0)
,则有当a=1时,?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点;
(4)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常数,又s+2t的最小值是1,则m+3n=7.
其中正确的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a、b、c、d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=
|x|
|x|-1
给出下列四个命题:
①当x>0时,y=f(x)单调递减且没有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,则解的个数一定是偶数;
④y=f(x)是偶函数且有最小值.则其中真命题是
 
.(只要写标题号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个正数a,b,c,满足b<a+c≤2b,a<b+c≤2a,则
a
b
的取值范围是(  )
A、(
2
3
3
2
B、(
1
3
2
3
C、(0,
3
2
D、(
2
3
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U是实数集R,集合M={x|x2>2x},N={x|log2(x-1)≤0},则(∁UM)∩N为(  )
A、{x|1<x<2}
B、{x|1≤x≤2}
C、{x|1<x≤2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈N|0<x<3},B={x|2x-1>1},则A∩B=(  )
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
1
2
,短轴长为2
3

(1)求椭圆C的方程;
(2)从定点M(0,2)任作直线l与椭圆C交于两个不同的点A、B,记线段AB的中点为P,试求点P的轨迹方程.

查看答案和解析>>

同步练习册答案