精英家教网 > 高中数学 > 题目详情
19.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色花和紫色花在同一花坛的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 先求出基本事件总数n=$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{A}_{2}^{2}}•{A}_{2}^{2}$=6,再求出红色花和紫色花在同一花坛包含的基本事件个数m=${C}_{2}^{2}{C}_{2}^{2}•{A}_{2}^{2}$=2,由此能求出红色花和紫色花在同一花坛的概率.

解答 解:为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,
余下的2种花种在另一个花坛中,
基本事件总数n=$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{A}_{2}^{2}}•{A}_{2}^{2}$=6,
红色花和紫色花在同一花坛包含的基本事件个数m=${C}_{2}^{2}{C}_{2}^{2}•{A}_{2}^{2}$=2,
∴红色花和紫色花在同一花坛的概率p=$\frac{m}{n}=\frac{2}{6}$=$\frac{1}{3}$.
故选:A.

点评 本题考查概率的求法,考查排列组合、等可能事件概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列2×2列联表:
年轻人非年轻人合计
经常使用单车用户10020120
不常使用单车用户602080
合计16040200
则得到的X2=2.1(小数点后保留一位).
(附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2asin2x+2sinxcosx-a,(a为常数)的图象过点$(0,-\sqrt{3})$.
(1)求函数f(x)的值域;
(2)若将函数y=f(x)的图象向右平移$\frac{1}{2}m$个单位后(作长度最短的平移),其图象关于y轴对称,求出m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=4$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由1,2,3,4,5,6,六个数字组成一个无重复数字的六位数,则有且只有2个偶数相邻的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知i是虚数单位,复数z满足zi=1+i,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b,c都为正数,那么用反证法证明“三个数a$+\frac{1}{b}$,b$+\frac{1}{c}$,c$+\frac{1}{a}$至少有一个不小于2”时,正确的反设是这三个数(  )
A.都不大于2B.都不小于2
C.至少有一个不大于2D.都小于2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2B+$\frac{1}{2}$sin2B=1,若|$\overrightarrow{BC}$+$\overrightarrow{AB}$|=3,则$\frac{16b}{ac}$的最小值为$\frac{16(2-\sqrt{2})}{3}$.

查看答案和解析>>

同步练习册答案