精英家教网 > 高中数学 > 题目详情
14.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=4$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

分析 利用向量三角形法则、向量共线定理即可得出.

解答 解:$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\overrightarrow{BC}+\overrightarrow{CD}$=$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{5}{4}(\overrightarrow{AC}-\overrightarrow{AB})$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{AC}$.
故选:B.

点评 本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某班有50名学生.随机编学号为1~50,现从中选取5名学生,用每部分选取的学号间隔一样的系统抽样方法确定,则所选学生的学号可能是(  )
A.5,15,25,30,45B.6,16,26.36,46C.10,18,26,34,42D.7,16,25,33,43

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知0<x<2π,且角x的终边和它的7倍角的终边相同,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且满足:Sn=2an-2,n∈N*
(1)求数列{an}的通项公式
(2)若bn=log2an,求数列$\{\frac{1}{{b}_{n}{b}_{n+1}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$.
(1)求函数f(x)的对称轴方程及相邻两条对称轴间的距离d;
(2)设α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色花和紫色花在同一花坛的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|+|x-1|+2a.
(1)若f(2)≥0,求实数a的取值范围;
(2)若存在x∈R使得不等式f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-$\frac{tx}{2lnx}$,g(x)=t(1-$\frac{{x}^{2}}{{e}^{tx}}$),其中t∈R且t≠0,e为自然对数的底数.
(1)当t>0时,求函数f(x)的单调区间和极值;
(2)是否存在t<0,对?x1∈(1,+∞),?x2∈(-∞,0),都有f(x1)>g(x2)?若存在,求出t的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若△ABC的面积S=$\frac{\sqrt{4}}{3}$(b2+c2-a2),则A=$arctan\frac{8}{3}$.

查看答案和解析>>

同步练习册答案