5£®Ä³¹«Ë¾ÊÇÒ»¼Òר×öij²úÆ·¹úÄÚÍâÏúÊ󵀮óÒµ£¬µÚÒ»Åú²úÆ·ÔÚÉÏÊÐ40ÌìÄÚÈ«²¿ÊÛÍ꣬¸Ã¹«Ë¾¶ÔµÚÒ»Åú²úÆ·µÄÏúÊÛÇé¿ö½øÐÐÁ˸ú×Ùµ÷²é£¬Æäµ÷²é½á¹ûÈçÏ£ºÍ¼¢ÙÖеÄÕÛÏßÊǹúÄÚÊг¡µÄÏúÊÛÇé¿ö£»Í¼¢ÚÖеÄÅ×ÎïÏßÊǹúÍâÊг¡µÄÏúÊÛÇé¿ö£»Í¼¢ÛÖеÄÕÛÏßÊÇÏúÊÛÀûÈóÓëÉÏÊÐʱ¼äµÄ¹ØÏµ£¨¹úÄÚÍâÊг¡Ïàͬ£©£¬

£¨1£©Çó¸Ã¹«Ë¾µÚÒ»Åú²úÆ·ÔÚ¹úÄÚÊг¡µÄÈÕÏúÊÛÁ¿f£¨t£©£¨µ¥Î»£ºÍò¼þ£©£¬¹úÍâÊг¡µÄÈÕÏúÊÛÁ¿g£¨t£©£¨µ¥Î»£ºÍò¼þ£©ÓëÉÏÊÐʱ¼ät£¨µ¥Î»£ºÌ죩µÄ¹ØÏµÊ½£»
£¨2£©Çó¸Ã¹«Ë¾µÚÒ»Åú²úÆ·ÈÕÏúÊÛÀûÈóQ£¨t£©£¨µ¥Î»£ºÍòÔª£©ÓëÉÏÊÐʱ¼ät£¨µ¥Î»£ºÌ죩µÄ¹ØÏµÊ½£®

·ÖÎö £¨1£©¸ù¾ÝͼÏóд³ö·Ö¶Îº¯Êý£¬¿ÉµÃ¹úÍâÊг¡µÄÈÕÏúÊÛÁ¿g£¨t£©£¨µ¥Î»£ºÍò¼þ£©ÓëÉÏÊÐʱ¼ät£¨µ¥Î»£ºÌ죩µÄ¹ØÏµÊ½£»
£¨2£©Ð´³öÕâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈóQ£¨t£©µÄ½âÎöʽQ£¨t£©=q£¨t£©•[f£¨t£©+g£¨t£©]¼´¿É£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬f£¨t£©=$\left\{\begin{array}{l}{2t£¬0¡Üt¡Ü30}\\{-6t+240£¬30£¼t¡Ü40}\end{array}\right.$£¬
g£¨t£©=at£¨t-40£©£¬¡à60=20a£¨20-40£©£¬¡àa=-$\frac{3}{20}$
¡àg£¨t£©=-$\frac{3}{20}$t2+6t£¬0¡Üt¡Ü40£¬
£¨2£©q£¨t£©=$\left\{\begin{array}{l}{3t£¬0¡Üt¡Ü20}\\{60£¬20£¼t¡Ü40}\end{array}\right.$
¡àÕâ¼Ò¹«Ë¾µÄÈÕÏúÊÛÀûÈóQ£¨t£©µÄ½âÎöʽ£º
Q£¨t£©=q£¨t£©•[f£¨t£©+g£¨t£©]=$\left\{\begin{array}{l}{-\frac{9}{20}{t}^{3}+24{t}^{2}£¬0¡Üt¡Ü20}\\{-9{t}^{2}+480t£¬20£¼t¡Ü30}\\{-9{t}^{2}+14400£¬30£¼t¡Ü40}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Ó㬿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬עÒâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®sin660¡ã=£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®$\frac{1}{2}$C£®-$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¶Ôa£¬b¡ÊR£¬¼Çmax{a£¬b}=$\left\{\begin{array}{l}{a£¬a¡Ýb}\\{b£¬a£¾b}\end{array}\right.$£¬Ôòº¯Êýf£¨x£©=max{|x+1|£¬x+2}£¨x¡ÊR£©µÄ×îСֵÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚËÄÀâ×¶P-ABCDÖУ¬¡ÏABC=¡ÏACD=90¡ã£¬¡ÏBAC=¡ÏCAD=60¡ã£¬PA¡ÍÆ½ÃæABCD£¬EΪPDµÄÖе㣬PA=2AB=2£® 
£¨1£©ÇóËÄÀâ×¶P-ABCDµÄÌå»ýV£»
£¨2£©ÈôFΪPCµÄÖе㣬ÇóÖ¤PC¡ÍÆ½ÃæAEF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ¾¥Ò¶Í¼¼Ç¼Á˼ס¢ÒÒÁ½×é¸÷ÎåÃûѧÉúÔÚÒ»´ÎÓ¢ÓïÌýÁ¦²âÊÔÖеijɼ¨£¨µ¥Î»£º·Ö£©£¬ÒÑÖª¼××éÊý¾ÝµÄƽ¾ùÊýΪ18£¬ÒÒ×éÊý¾ÝµÄÖÐλÊýΪ16£¬Ôòx£¬yµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®18£¬6B£®8£¬16C£®8£¬6D£®18£¬16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨x£¬4£¬5£©£¬$\overrightarrow{b}$=£¨1£¬-2£¬2£©ÇÒ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{2}}{6}$£¬ÔòxµÄֵΪ  £¨¡¡¡¡£©
A£®3B£®3»ò-11C£®-3D£®-3»ò11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ËıßÐÎABCDΪÕý·½ÐΣ¬EΪABµÄÖе㣬FΪADÉÏ¿¿½üDµÄÈýµÈ·Öµã£¬ÈôÏòÕý·½ÐÎÄÚËæ»úͶÖÀÒ»¸öµã£¬Ôò¸ÃµãÂäÔÚ¡÷CEFÄڵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{9}{16}$B£®$\frac{7}{16}$C£®$\frac{7}{12}$D£®$\frac{5}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®º¯Êýf£¨x£©=ax-1-2£¨a£¾0£¬a¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÈôµãAÔÚÖ±Ïßmx-ny-1=0ÉÏ£¬ÆäÖÐm£¾0£¬n£¾0£¬Ôò$\frac{1}{m}+\frac{2}{n}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®$3+2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÔ²CµÄÔ²ÐÄC¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬°ë¾¶r=1£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=2+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µãPµÄÖ±½Ç×ø±êΪ£¨1£¬2£©£¬Ö±Ïßl½»Ô²CÓÚA£¬BÁ½µã£¬Çó$\frac{|PA|•|PB|}{|PA|+|PB|}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸