分析 (1)利用直角三角形的边角关系可得BC,CD.SABCD=$\frac{1}{2}AB•BC+\frac{1}{2}AC•CD$,利用V=$\frac{1}{3}$S四边形ABCD×PA,即可得出.
(2)在Rt△ABC,∠BAC=60°,可得AC=2AB,PA=CA,又F为PC的中点,可得AF⊥PC.利用线面垂直的判定与性质定理可得:CD⊥PC.利用三角形的中位线定理可得:EF∥CD.于是EF⊥PC.即可证明PC⊥平面AEF.
解答 (本题满分12分)
解:(1)∵在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=$\sqrt{3}$,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=2$\sqrt{3}$,AD=4.
∴SABCD=$\frac{1}{2}AB•BC+\frac{1}{2}AC•CD$=$\frac{1}{2}×1×\sqrt{3}+\frac{1}{2}×2×2\sqrt{3}=\frac{5}{2}\sqrt{3}$.
则V=$\frac{1}{3}×\frac{5}{2}\sqrt{3}×2=\frac{5}{3}\sqrt{3}$.….(6分)
(2)∵PA=CA,F为PC的中点,
∴AF⊥PC.
∵PA⊥平面ABCD,
∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.
∴CD⊥PC.
∵E为PD中点,F为PC中点,
∴EF∥CD.则EF⊥PC.
∵AF∩EF=F,
∴PC⊥平面AEF. …(12分)
点评 本题考查了线面垂直的判定与性质定理、三角形的中位线定理、直角三角形的边角关系、四棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$ | B. | x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$ | C. | (-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$ | D. | x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | [-2,1)∪(1,+∞) | C. | (-2,+∞) | D. | (-2,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100}{3}$π | B. | 100π | C. | $\frac{50}{3}$π | D. | 50π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com