精英家教网 > 高中数学 > 题目详情
16.对a,b∈R,记max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a>b}\end{array}\right.$,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是$\frac{1}{2}$.

分析 讨论当|x+1|≥x+2,|x+1|<x+2时,求出f(x)的解析式,由单调性可得最小值.

解答 解:当|x+1|≥x+2,即x+1≥x+2或x+1≤-x-2,
解得x≤-$\frac{3}{2}$时,f(x)=|x+1|,递减,
则f(x)的最小值为f(-$\frac{3}{2}$)=|-$\frac{3}{2}$+1|=$\frac{1}{2}$;
当|x+1|<x+2,可得x>-$\frac{3}{2}$时,f(x)=x+2,递增,
即有f(x)>$\frac{1}{2}$,
综上可得f(x)的最小值为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的最值的求法,考查绝对值不等式的解法,注意运用分类讨论的思想方法,以及函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,长方形ABCD中,AB=2,BC=4,以D为圆心的两个圆心半圆,半径分别为1和2,G为大半圆直径的右端点,E为大半圆上的一个动点,DE与小半圆交于点F,EM⊥BC,垂足为M,EM与大半圆直径交于点H,FN⊥EM,垂足为N.
(Ⅰ)设∠GDE=30°,求MN的长度;
(Ⅱ)求△BMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式中正确的是(  )
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$C.(-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$D.x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\frac{π}{2}$<α<π,若sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,则cos($\frac{2π}{3}$+α)=(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{lg(x+2)}{x-1}$的定义域是(  )
A.(-2,1)B.[-2,1)∪(1,+∞)C.(-2,+∞)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC三个顶点的坐标分别为A(2,0),B(7,0),C(1,2),D为BC的中点.
(Ⅰ)求AD所在直线的方程;
(Ⅱ)求△ACD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司是一家专做某产品国内外销售的企业,第一批产品在上市40天内全部售完,该公司对第一批产品的销售情况进行了跟踪调查,其调查结果如下:图①中的折线是国内市场的销售情况;图②中的抛物线是国外市场的销售情况;图③中的折线是销售利润与上市时间的关系(国内外市场相同),

(1)求该公司第一批产品在国内市场的日销售量f(t)(单位:万件),国外市场的日销售量g(t)(单位:万件)与上市时间t(单位:天)的关系式;
(2)求该公司第一批产品日销售利润Q(t)(单位:万元)与上市时间t(单位:天)的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知0<θ<π,tan(θ+$\frac{π}{4}$)=$\frac{1}{7}$,那么sinθ+cosθ=-$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案