精英家教网 > 高中数学 > 题目详情
已知二阶矩阵M=
2  1
0  1
,求矩阵M特征值及特征向量.
考点:特征值与特征向量的计算
专题:计算题,矩阵和变换
分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
解答: 解:由f(λ)=
.
λ-2-1
0λ-1
.
=(λ-2)(λ-1)=0,
解得λ=2或λ=1,
设λ=2对应的一个特征向量为α=
x
y

则由λα=Mα,得
2x=2x+y
2y=y
得y=0,可令x=1,
∴当λ=2时,对应的特征向量为α1=
1
0

同理可得,当λ=1时,对应的特征向量为α2=
1
-1
点评:本题主要考查了矩阵特征值与特征向量的计算等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(x2-2)(x2-3x+2)的零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知a2=2,a3=4,求数列{an}的通项公式及数列的前5项的和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=
2

(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求二面角A-CD-B的正切值;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=
3
,SE⊥AD.
(Ⅰ)证明:BE⊥平面SEC;
(Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线y2=2px,(p>0)上,△ABC的重心与此抛物线的焦点F重合(如图)
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标;
(3)求BC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求证:PC⊥AB;
(2)求二面角B-AP-C的大小的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x>2,求x+
4
x-2
的最小值.
(2)已知x>0,y>0,且x+y=1,求
4
x
+
9
y
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线C由半椭圆
y2
a2
+
x2
b2
=1(y≥0)与圆弧x2+(y-c)2=a2(y≤0)组成的,F(0,c)为半椭圆的一个焦点,A1、A2和B1、B2分别是曲线C与x轴、y轴交点,已知椭圆的离心率e=
1
2
,S △FA1B1=
3

(Ⅰ)求a,b,c的值;
(Ⅱ)过点F且不与x轴垂直的直线l交曲线C于P、Q两点.
(i)求证:当且仅当P,Q均在半椭圆
y2
a2
+
x2
b2
=1(y≥0)上时,△B1PQ的周长L取最大,且最大值为8;
(ii)当△B1PQ的周长L取最大时,求弦PQ长度的取值范围.

查看答案和解析>>

同步练习册答案