【题目】目前,成都市B档出租车的计价标准是:路程2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
(1)将乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客行程为16km,他准备先乘一辆B档出租车行驶8km,然后再换乘另一辆B档出租车完成余下行程,请问:他这样做是否比只乘一辆B档出租车完成全部行程更省钱?
【答案】
(1)解:由题意得,车费f(x)关于路程x的函数为:
=
(2)解:只乘一辆车的车费为:f(16)=2.85×16﹣5.3=40.3(元),
换乘2辆车的车费为:2f(8)=2×(4.2+1.9×8)=38.8(元).
∵40.3>38.8,
∴该乘客换乘比只乘一辆车更省钱
【解析】(1)仔细审题,由成都市B档出租车的计价标准,能够列出乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数.(2)只乘一辆车的车费为:f(16)=2.85×16﹣5.3=40.3元,换乘2辆车的车费为:2f(8)=2×(4.2+1.9×8)=38.8元,由此能得到该乘客换乘比只乘一辆车更省钱.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga( +x)(其中a>1).
(1)判断函数y=f(x)的奇偶性,并说明理由;
(2)判断 (其中m,n∈R,且m+n≠0)的正负,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解集是( )
A.{x|﹣3<x<0或1<x<3}
B.{x|1<x<3}
C.{x|x>3或x<﹣3}
D.{x|x<﹣3或x>1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点与两定点和连线的斜率之积等于.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设直线: ()与轨迹交于、两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程 =1表示双曲线,命题q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命题,且綈(p∧q)也是真命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为自然对数的底数.
(1)函数的图象能否与轴相切?若能与轴相切,求实数的值;否则,请说明理由;
(2)若函数在上单调递增,求实数能取到的最大整数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体的底面是边长为2的正方形, 底面, ,且.
(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线与平面所成角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=0处的切线为l:4x+y﹣5=0,若x=﹣2时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段。现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 计 | 50 | 1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖。如果前三道题都答错,就不再答第四题。某同学进入决赛,每道题答对的概率的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com