精英家教网 > 高中数学 > 题目详情

【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段。现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100]

合 计

50

1

(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);

(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖。如果前三道题都答错,就不再答第四题。某同学进入决赛,每道题答对的概率的值恰好与频率分布表中不少于80分的频率的值相同.

①求该同学恰好答满4道题而获得一等奖的概率;

②记该同学决赛中答题个数为,求的分布列及数学期望.

【答案】(1)①8 ②0.44 ③6 ④0.12;(2)①0.1728;②见解析.

【解析】试题分析:(1)根据样本容量,频率和频数之间的关系得到要求的几个数据,注意第三个数据是用样本容量减去其他三个数得到;(2)①该同学恰好答满道题而获得一等奖即前道题中刚好答对 道也能够答对才获得一等奖,根据相互独立事件的概率公式得到结果;答对道题就终止答题,并获得一等奖,所以该同学答题个数为 ,结合变量对应的概率,写出分布列和期望.

试题解析:(1)由图中数据知,样本容量为50,根据频率=

①处=0.16×50=8;②处=;③处填:50﹣44=6;④处填:

故有:①8 ②0.44 ③6 ④0.12.

由(1),得

①该同学恰好答满4道题而获得一等奖,即前3道题中刚好答对1道,

第4道也能够答对才获得一等奖,则有×0.4×0.62×0.4=0.1728.

②由题设可知,该同学答题个数为2、3、4.即X=2、3、4,

2

3

4

0.16

0.408

0.432

分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】目前,成都市B档出租车的计价标准是:路程2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
(1)将乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客行程为16km,他准备先乘一辆B档出租车行驶8km,然后再换乘另一辆B档出租车完成余下行程,请问:他这样做是否比只乘一辆B档出租车完成全部行程更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ) 证明f(x)在[1,+∞)上是增函数;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(x,y)是区域 , (n∈N*)内的点,目标函数z=x+y,z的最大值记作zn . 若数列{an}的前n项和为Sn , a1=1,且点(Sn , an)在直线zn=x+y上.
证明:数列{an﹣2}为等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习兴趣小组开展“学生语文成绩与外语成绩的关系”的课题研究,考察该校高二年级800名学生上学期期末的语文和外语成绩,按是否优秀分类得结果:语文和外语成绩都优秀的有60人,语文成绩优秀但外语成绩不优秀的有140人,外语成绩优秀但语文成绩不优秀的有100人.

(Ⅰ)能否有的把握认为“该校学生语文成绩优秀与外语成绩是否优秀有关系”?

(Ⅱ)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记所抽取的成绩中,语文、外语两科成绩至少有一科优秀的人数为,求的分布列和数学期望

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的各项均为正数,且Sn= + +…+ ,S2= ,S3= .设[x]表示不大于x的最大整数(如[2.10]=2,[0.9]=0).
(1)试求数列{an}的通项;
(2)求T=[log21]+[log22]+[log23]+…+[log2 ﹣1)]+[log2( )]关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2﹣2ax+b(a≠0)在闭区间[1,2]上有最大值0,最小值﹣1,则a,b的值为(
A.a=1,b=0
B.a=﹣1,b=﹣1
C.a=1,b=0或a=﹣1,b=﹣1
D.以上答案均不正确

查看答案和解析>>

同步练习册答案