精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(cosx,-3),$\overrightarrow{b}$=(2cosx,$\frac{1}{3}$),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,x∈R,则f(x)是(  )
A.最小正周期为π的偶函数B.最小正周期为π的奇函数
C.最小正周期为$\frac{π}{2}$的偶函数D.最小正周期为$\frac{π}{2}$的奇函数

分析 根据向量数量积公式和三角恒等变换公式,化简得f(x)=cos2x,再利用三角函数的周期的公式,奇偶性的定义,即可得解.

解答 解:f(x)=$\overrightarrow{a}•\overrightarrow{b}=cosx•2cosx-3×\frac{1}{3}=2co{s}^{2}x-1$=cos2x,
∴f(x)的最小正周期为$\frac{2π}{2}$=π,满足f(-x)=f(x),故f(x)是偶函数.
故选:A

点评 本题考查了向量数量积运算、三角函数恒等变形、三角函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若复数z满足zi=1+2i(i为虚数单位),则复数z=2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Msin(ωx+φ)(M>0)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,若(2a-c)cosB=bcosC,求f($\frac{A}{2}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边与单位圆交于点(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),则sin2α的值为(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.求函数f(x)=x+$\frac{1}{x}$-1-ln(x+3)零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出S的值为(  )
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.图形的对称,正弦曲线的流畅都能体现“数学美”.“黄金分割”也是数学美得 一种体现,如图,椭圆的中心在原点,F为左焦点,当$\overrightarrow{FB}⊥\overrightarrow{AB}$时,其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直三棱柱ABC-A1B1C1的底面为正三角形,E,F分别是A1C1,B1C1上的点,且满足A1E=EC1,B1F=3FC1
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC-A1B1C1的棱长均相等,求二面角C1-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U={1,2,3,4,5,6,7},集合A={2,4,5},B={1,3,5,7},则(∁UA)∩B=(  )
A.{7}B.{3,5}C.{1,3,6,7}D.{1,3,7}

查看答案和解析>>

同步练习册答案