精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别是a,b,c,且A=
3
,b=3,△ABC的面积为
15
3
4

(Ⅰ)求边a的边长;
(Ⅱ)求cos2B的值.
考点:正弦定理
专题:解三角形
分析:(Ⅰ)利用三角形面积公式求得c,然后利用余弦定理求得a.
(Ⅱ)利用余弦定理求得cosB的值,求得B,进而求得cos2B.
解答: 解:(Ⅰ)在△ABC中,A=
3
,b=3,△ABC的面积为
15
3
4

∴S△ABC=
1
2
b•c•sinA=
1
2
•3•c
3
2
=
15
3
4

解得:c=5,
∴a=
b2+c2-2bccosA
=
9+25+2×3×5×
1
2
=7.
(Ⅱ)∵cosB=
a2+c2-b2
2ac
=
49+25-9
2×7×5
=
13
14

∴cos2B=2cos2B-1=
71
98
点评:本题主要考查了正弦定理和余弦定理.利用正弦定理和余弦定理完成边角问题的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(2x)2的导数是(  )
A、f′(x)=2x
B、f′(x)=4x
C、f′(x)=8x
D、f′(x)=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角△ABC的内角A,B,C的对边分别为a,b,c,且ccosB+
3
bsinC=a.
(1)求角C的大小;
(2)若c=1,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x2+7x-30≥0,q:x2-(2a+1)x+a2+a≥0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列关于x的方程:
(1)2sinx+cosx=2;
(2)sin2x=sin2x;
(3)cosx+2=2tan2
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B是抛物线C:y2=2px(p>0)上不同的两点,点D在抛物线C的准线l上,且焦点F到直线x-y+2=0的距离为
3
2
2

(Ⅰ)求抛物线C的方程;
(Ⅱ)现给出以下三个论断:①直线AB过焦点F;②直线AD过原点O;③直线BD平行x轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
6
)+cos2x+
3
sinxcosx.
(1)若|x|<
π
4
,求函数f(x)的值域;
(2)设A,B,C为△ABC的三个内角,若f(
A
2
)=
5
2
,cos(A+C)=-
5
3
14
,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C:(x-2)2+(y-b)2=r2经过点(1,0),且圆C被x轴和y轴截得的弦长之比为1:
6
,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为非零常数,已知(x2+
1
x
(x-
a
x
)
6
的展开式中各项系数和为2,则展开式中常数项等于
 

查看答案和解析>>

同步练习册答案